NCERT Ebook - Chemistry in Everyday Life

Unit 16

Chemistry in Everyday Life

Objectives

After studying this Unit you will be able to

 

  • visualise the importance of Chemistry in daily life;
  • explain the term ‘chemotherapy’;
  • describe the basis of classification of drugs;
  • explain drug-target interaction of enzymes and receptors;
  • explain how various types of drugs function in the body;
  • know about artificial sweetening agents and food preservatives;
  • discuss the chemistry of cleansing agents.

 

 

From living perception to abstract thought, and from this to practice.

V.I. Lenin.

By now, you have learnt the basic principles of chemistry and also realised that it influences every sphere of human life. The principles of chemistry have been used for the benefit of mankind. Think of cleanliness — the materials like soaps, detergents, household bleaches, tooth pastes, etc. will come to your mind. Look towards the beautiful clothes — immediately chemicals of the synthetic fibres used for making clothes and chemicals giving colours to them will come to your mind. Food materials — again a number of chemicals about which you have learnt in the previous Unit will appear in your mind. Of course, sickness and diseases remind us of medicines — again chemicals. Explosives, fuels, rocket propellents, building and electronic materials, etc., are all chemicals. Chemistry has influenced our life so much that we do not even realise that we come across chemicals at every moment; that we ourselves are beautiful chemical creations and all our activities are controlled by chemicals. In this Unit, we shall learn the application of Chemistry in three important and interesting areas, namely – medicines, food materials and cleansing agents.

 

16.1 Drugs and their Classification

 Drugs are chemicals of low molecular masses (~100 – 500u). These interact with macromolecular targets and produce a biological response. When the biological response is therapeutic and useful, these chemicals are called medicines and are used in diagnosis, prevention and treatment of diseases. Most of the drugs used as medicines are potential poisons, if taken in doses higher than those recommended. Use of chemicals for therapeutic effect is called chemotherapy.

16.1.1 Classification of Drugs

 Drugs can be classified mainly on criteria outlined as follows:

(a) On the basis of pharmacological effect

This classification is based on pharmacological effect of the drugs. It is useful for doctors because it provides them the whole range of drugs available for the treatment of a particular type of problem. For example, analgesics have pain killing effect, antiseptics kill or arrest the growth of microorganisms.

(b) On the basis of drug action

It is based on the action of a drug on a particular biochemical process. For example, all antihistamines inhibit the action of the compound, histamine which causes inflammation in the body. There are various ways in which action of histamines can be blocked. You will learn about this in Section 16.3.2.

(c) On the basis of chemical structure

It is based on the chemical structure of the drug. Drugs classified in this way share common structural features and often have similar pharmacological activity. For example, sulphonamides have common structural feature, given below.

Structural features of sulphonamides

(d) On the basis of molecular targets

Drugs usually interact with biomolecules such as carbohydrates, lipids, proteins and nucleic acids. These are called target molecules or drug targets. Drugs possessing some common structural features may have the same mechanism of action on targets. The classification based on molecular targets is the most useful classification for medicinal chemists.



16.2 Drug-Target Interaction

Macromolecules of biological origin perform various functions in the body. For example, proteins which perform the role of biological catalysts in the body are called enzymes, those which are crucial to communication system in the body are called receptors. Carrier proteins carry polar molecules across the cell membrane. Nucleic acids have coded genetic information for the cell. Lipids and carbohydrates are structural parts of the cell membrane. We shall explain the drug-target interaction with the examples of enzymes and receptors.

 

16.2.1 Enzymes as Drug Targets

 

(a) Catalytic action of enzymes

 For understanding the interaction between a drug and an enzyme, it is important to know how do enzymes catalyse the reaction (Section 5.2.4). In their catalytic activity, enzymes perform two major functions:

(i) The first function of an enzyme is to hold the substrate for a chemical reaction. Active sites of enzymes hold the substrate molecule in a suitable position, so that it can be attacked by the reagent effectively. Substrates bind to the active site of the enzyme through a variety of interactions such as ionic bonding, hydrogen bonding, van der Waals interaction or dipole-dipole interaction (Fig. 16.1).

Fig. 16.1

(a) Active site of an enzyme (b) Substrate (c) Substrate held in active site of the enzyme

(ii) The second function of an enzyme is to provide functional groups that will attack the substrate and carry out chemical reaction.

(b) Drug-enzyme interaction

 Drugs inhibit any of the above mentioned activities of enzymes. These can block the binding site of the enzyme and prevent the binding of substrate, or can inhibit the catalytic activity of the enzyme. Such drugs are called enzyme inhibitors.

 

Drugs inhibit the attachment of substrate on active site of enzymes in two different ways;

(i) Drugs compete with the natural substrate for their attachment on the active sites of enzymes. Such drugs are called competitive inhibitors (Fig. 16.2).

Fig. 16.2

Drug and substrate competing for active site

(ii) Some drugs do not bind to the enzyme’s active site. These bind to a different site of enzyme which is called allosteric site. This binding of inhibitor at allosteric site (Fig.16.3) changes the shape of the active site in such a way that substrate can- not recognise it.

Fig. 16.3: Non-competitive inhibitor changes the active site of enzyme after binding at allosteric site.

If the bond formed between an enzyme and an inhibitor is a strong covalent bond and cannot be broken easily, then the enzyme is blocked permanently. The body then degrades the enzyme-inhibitor complex and synthesises the new enzyme.

16.2.2 Receptors as Drug Targets

 Receptors are proteins that are crucial to body’s communication process. Majority of these are embedded in cell membranes (Fig. 16.4). Receptor proteins are embedded in the cell membrane in such a way that their small part possessing active site projects out of the surface of the membrane and opens on the outside region of the cell membrane (Fig. 16.4).

Fig. 16.4
Receptor protein embedded in the cell membrane, the active site of the receptor opens on the outside region of the cell.

 

 In the body, message between two neurons and that between neurons to muscles is communicated through certain chemicals. These chemicals, known as chemical messengers are received at the binding sites of receptor proteins. To accommodate a messenger, shape of the receptor site changes. This brings about the transfer of message into the cell. Thus, chemical messenger gives message to the cell without entering the cell (Fig. 16.5).

Fig. 16.5: (a) Receptor receiving chemical messenger

(b) Shape of the receptor changed after attachment of messenger

(c) Receptor regains structure after removal of chemical messenger.

 There are a large number of different receptors in the body that interact with different chemical messengers. These receptors show selectivity for one chemical messenger over the other because their binding sites have different shape, structure and amino acid composition.

 Drugs that bind to the receptor site and inhibit its natural function are called antagonists. These are useful when blocking of message is required. There are other types of drugs that mimic the natural messenger by switching on the receptor, these are called agonists. These are useful when there is lack of natural chemical messenger.



16.3 Therapeutic Action of Different Classes of Drugs

In this Section, we shall discuss the therapeutic action of a few important classes of drugs.

16.3.1 Antacids

 Over production of acid in the stomach causes irritation and pain. In severe cases, ulcers are developed in the stomach. Until 1970, only treatment for acidity was administration of antacids, such as sodium hydrogencarbonate or a mixture of aluminium and magnesium hydroxide. However, excessive hydrogencarbonate can make the stomach alkaline and trigger the production of even more acid. Metal hydroxides are better alternatives because of being insoluble, these do not increase the pH above neutrality. These treatments control only symptoms, and not the cause. Therefore, with these metal salts, the patients cannot be treated easily. In advanced stages, ulcers become life threatening and its only treatment is removal of the affected part of the stomach.

 A major breakthrough in the treatment of hyperacidity came through the discovery according to which a chemical, histamine, stimulates the secretion of pepsin and hydrochloric acid in the stomach. The drug cimetidine (Tegamet), was designed to prevent the interaction of histamine with the receptors present in the stomach wall. This resulted in release of lesser amount of acid. The importance of the drug was so much that it remained the largest selling drug in the world until another drug, ranitidine (Zantac), was discovered.

Img01

 

16.3.2 Antihistamines

 Histamine is a potent vasodilator. It has various functions. It contracts the smooth muscles in the bronchi and gut and relaxes other muscles, such as those in the walls of fine blood vessels. Histamine is also responsible for the nasal congestion associated with common cold and allergic response to pollen.

 Synthetic drugs, brompheniramine (Dimetapp) and terfenadine (Seldane), act as antihistamines. They interfere with the natural action of histamine by competing with histamine for binding sites of receptor where histamine exerts its effect.

Now the question that arises is, “Why do above mentioned antihistamines not affect the secretion of acid in stomach?” The reason is that antiallergic and antacid drugs work on different receptors.

 

16.3.3 Neurologically Active Drugs

(a) Tranquilizers

 Tranquilizers and analgesics are neurologically active drugs. These affect the message transfer mechanism from nerve to receptor.

Tranquilizers are a class of chemical compounds used for the treatment of stress, and mild or even severe mental diseases. These relieve anxiety, stress, irritability or excitement by inducing a sense of well-being. They form an essential component of sleeping pills. There are various types of tranquilizers. They function by different mechanisms. For example, noradrenaline is one of the neurotransmitters that plays a role in mood changes. If the level of noradrenaline is low for some reason, then the signal-sending activity becomes low, and the person suffers from depression. In such situations, antidepressant drugs are required. These drugs inhibit the enzymes which catalyse the degradation of noradrenaline. If the enzyme is inhibited, this important neurotransmitter is slowly metabolised and can activate its receptor for longer periods of time, thus counteracting the effect of depression. Iproniazid and phenelzine are two such drugs.

Some tranquilizers namely, chlordiazepoxide and meprobamate, are relatively mild tranquilizers suitable for relieving tension. Equanil is used in controlling depression and hypertension.


 Derivatives of barbituric acid viz., veronal, amytal, nembutal, luminal and seconal constitute an important class of tranquilizers. These derivatives are called barbiturates. Barbiturates are hypnotic, i.e., sleep producing agents. Some other substances used as tranquilizers are valium and serotonin.

Img02

(b) Analgesics

Analgesics reduce or abolish pain without causing impairment of consciousness, mental confusion, incoordination or paralysis or some other disturbances of nervous system. These are classified as follows:

(i) Non-narcotic (non-addictive) analgesics

(ii) Narcotic drugs

 (i) Non-narcotic (non-addictive) analgesics: Aspirin and paracetamol belong to the class of non-narcotic analgesics. Aspirin is the most familiar example. Aspirin inhibits the synthesis of chemicals known as prostaglandins which stimulate inflammation in the tissue and cause pain. These drugs are effective in relieving skeletal pain such as that due to arthritis. These drugs have many other effects such as reducing fever (antipyretic) and preventing platelet coagulation. Because of its anti blood clotting action, aspirin finds use in prevention of heart attacks.

 (ii) Narcotic analgesics: Morphine and many of its homologues, when administered in medicinal doses, relieve pain and produce sleep. In poisonous doses, these produce stupor, coma, convulsions and ultimately death. Morphine narcotics are sometimes referred to as opiates, since they are obtained from the opium poppy.

These analgesics are chiefly used for the relief of postoperative pain, cardiac pain and pains of terminal cancer, and in child birth.

Img03

16.3.4 Antimicrobials

 Diseases in human beings and animals may be caused by a variety of microorganisms such as bacteria, virus, fungi and other pathogens. An antimicrobial tends to destroy/prevent development or inhibit the pathogenic action of microbes such as bacteria (antibacterial drugs), fungi (antifungal agents), virus (antiviral agents), or other parasites (antiparasitic drugs) selectively. Antibiotics, antiseptics and disinfectants are antimicrobial drugs.

(a) Antibiotics

 Antibiotics are used as drugs to treat infections because of their low toxicity for humans and animals. Initially antibiotics were classified as chemical substances produced by microorganisms (bacteria, fungi and molds) that inhibit the growth or even destroy microorganisms. The development of synthetic methods has helped in synthesising some of the compounds that were originally discovered as products of microorganisms. Also, some purely synthetic compounds have antibacterial activity, and therefore, definition of antibiotic has been modified. An antibiotic now refers to a substance produced wholly or partly by chemical synthesis, which in low concentrations inhibits the growth or destroys microorganisms by intervening in their metabolic processes.

 The search for chemicals that would adversely affect invading bacteria but not the host began in the nineteenth century. Paul Ehrlich, a German bacteriologist, conceived this idea. He investigated arsenic based structures in order to produce less toxic substances for the treatment of syphilis. He developed the medicine, arsphenamine, known as salvarsan. Paul Ehrlich got Nobel prize for Medicine in 1908 for this discovery. It was the first effective treatment discovered for syphilis. Although salvarsan is toxic to human beings, its effect on the bacteria, spirochete, which causes syphilis is much greater than on human beings. At the same time, Ehrlich was working on azodyes also. He noted that there is similarity in structures of salvarsan and azodyes. The –As = As– linkage present in arsphenamine resembles the –N = N – linkage present in azodyes in the sense that arsenic atom is present in place of nitrogen. He also noted tissues getting coloured by dyes selectively. Therefore, Ehrlich began to search for the compounds which resemble in structure to azodyes and selectively bind to bacteria. In 1932, he succeeded in preparing the first effective antibacterial agent, prontosil, which resembles in structure to the compound, salvarsan.  Soon it was discovered that in the body prontosil is converted to a compound called sulphanilamide, which is the real active compound. Thus the sulpha drugs were discovered. A large range of sulphonamide analogues was synthesised. One of the most effective is sulphapyridine.

Img04

H.W. Florey and Alexander Fleming shared the Nobel prize for Medicine in 1945 for their independent contributions to the development of penicillin.

Despite the success of sulfonamides, the real revolution in antibacterial therapy began with the discovery of Alexander Fleming in 1929, of the antibacterial properties of a Penicillium fungus. Isolation and purification of active compound to accumulate sufficient material for clinical trials took thirteen years.

Antibiotics have either cidal (killing) effect or a static (inhibitory) effect on microbes. A few examples of the two types of antibiotics are as follows:

Bactericidal                        Bacteriostatic

Penicillin                                Erythromycin

Aminoglycosides                 Tetracycline

Ofloxacin                               Chloramphenicol

 The range of bacteria or other microorganisms that are affected by a certain antibiotic is expressed as its spectrum of action. Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria are said to be broad spectrum antibiotics. Those effective mainly against Gram-positive or Gram-negative bacteria are narrow spectrum antibiotics. If effective against a single organism or disease, they are referred to as limited spectrum antibiotics. Penicillin G has a narrow spectrum. Ampicillin and Amoxycillin are synthetic modifications of penicillins. These have broad spectrum. It is absolutely essential to test the patients for sensitivity (allergy) to penicillin before it is administered. In India, penicillin is manufactured at the Hindustan Antibiotics in Pimpri and in private sector industry.

Chloramphenicol, isolated in 1947, is a broad spectrum antibiotic. It is rapidly absorbed from the gastrointestinal tract and hence can be given orally in case of typhoid, dysentery, acute fever, certain form of urinary infections, meningitis and pneumonia. Vancomycin and ofloxacin are the other important broad spectrum antibiotics. The antibiotic dysidazirine is supposed to be toxic towards certain strains of cancer cells.

Img05

(b) Antiseptics and disinfectants

 Antiseptics and disinfectants are also the chemicals which either kill or prevent the growth of microorganisms.

Antiseptics are applied to the living tissues such as wounds, cuts, ulcers and diseased skin surfaces. Examples are furacine, soframicine, etc. These are not ingested like antibiotics. Commonly used antiseptic, dettol is a mixture of chloroxylenol and terpineol. Bithionol (the compound is also called bithional) is added to soaps to impart antiseptic properties. Iodine is a powerful antiseptic. Its 2-3 per cent solution in alcohol-water mixture is known as tincture of iodine. It is applied on wounds. Iodoform is also used as an antiseptic for wounds. Boric acid in dilute aqueous solution is weak antiseptic for eyes.

Disinfectants are applied to inanimate objects such as floors, drainage system, instruments, etc. Same substances can act as an antiseptic as well as disinfectant by varying the concentration. For example, 0.2 per cent solution of phenol is an antiseptic while its one percent solution is disinfectant.

Chlorine in the concentration of 0.2 to 0.4 ppm in aqueous solution and sulphur dioxide in very low concentrations, are disinfectants.

16.3.5 Antifertility Drugs

 Antibiotic revolution has provided long and healthy life to people. The life expectancy has almost doubled. The increased population has caused many social problems in terms of food resources, environmental issues, employment, etc. To control these problems, population is required to be controlled. This has lead to the concept of family planning. Antifertility drugs are of use in this direction. Birth control pills essentially contain a mixture of synthetic estrogen and progesterone derivatives. Both of these compounds are hormones. It is known that progesterone suppresses ovulation. Synthetic progesterone derivatives are more potent than progesterone. Norethindrone is an example of synthetic progesterone derivative most widely used as antifertility drug. The estrogen derivative which is used in combination with progesterone derivative is ethynylestradiol (novestrol).

Img06

 

Intext Questions

16.1 Sleeping pills are recommended by doctors to the patients suffering from sleeplessness but it is not advisable to take its doses without consultation with the doctor. Why ?

16.2 With reference to which classification has the statement, “ranitidine is an antacid” been given?



16.4 Chemicals in Food

 Chemicals are added to food for (i) their preservation, (ii) enhancing their appeal, and (iii) adding nutritive value in them. Main categories of food additives are as follows:

(i) Food colours

(ii) Flavours and sweeteners

(iii) Fat emulsifiers and stabilising agents

(iv) Flour improvers - antistaling agents and bleaches

(v) Antioxidants

(vi) Preservatives

(vii) Nutritional supplements such as minerals, vitamins and amino acids.

Except for chemicals of category (vii), none of the above additives have nutritive value. These are added either to increase the shelf life of stored food or for cosmetic purposes. In this Section we will discuss only sweeteners and food preservatives.

16.4.1 Artificial Sweetening Agents

 Natural sweeteners, e.g., sucrose add to calorie intake and therefore many people prefer to use artificial sweeteners. Ortho-sulphobenzimide, also called saccharin, is the first popular artificial sweetening agent. It has been used as a sweetening agent ever since it was discovered in 1879. It is about 550 times as sweet as cane sugar. It is excreted from the body in urine unchanged. It appears to be entirely inert and harmless when taken. Its use is of great value to diabetic persons and people who need to control intake of calories. Some other commonly marketed artificial sweeteners are given in Table 16.1.

Table 16.1: Artificial Sweeteners

Img07

Img08

 Aspartame is the most successful and widely used artificial sweetener. It is roughly 100 times as sweet as cane sugar. It is methyl ester of dipeptide formed from aspartic acid and phenylalanine. Use of aspartame is limited to cold foods and soft drinks because it is unstable at cooking temperature.

Alitame is high potency sweetener, although it is more stable than aspartame, the control of sweetness of food is difficult while using it.

Sucralose is trichloro derivative of sucrose. Its appearance and taste are like sugar. It is stable at cooking temperature. It does not provide calories.

16.4.2 Food Preservatives

 Food preservatives prevent spoilage of food due to microbial growth. The most commonly used preservatives include table salt, sugar, vegetable oils and sodium benzoate, C6H5COONa. Sodium benzoate is used in limited quantities and is metabolised in the body. Salts of sorbic acid and propanoic acid are also used as preservatives.

 

Intext Question

16.3 Why do we require artificial sweetening agents ?

16.4.3 Antioxidants in Food

These are important and necessary food additives. These help in food preservation by retarding the action of oxygen on food. These are more reactive towards oxygen than the food material which they are protecting. The two most familiar antioxidants are butylated hydroxy toluene (BHT) and butylated hydroxy anisole (BHA). The addition of BHA to butter increases its shelf life from months to years.

Sometimes BHT and BHA along with citric acid are added to produce more effect. Sulphur dioxide and sulphite are useful antioxidants for wine and beer, sugar syrups and cut, peeled or dried fruits and vegetables.



16.5 Cleansing Agents

 In this Section, we will learn about detergents. Two types of detergents are used as cleansing agents. These are soaps and synthetic detergents. These improve cleansing properties of water. These help in removal of fats which bind other materials to the fabric or skin.

16.5.1 Soaps


Soaps are the detergents used since long. Soaps used for cleaning purpose are sodium or potassium salts of long chain fatty acids, e.g., stearic, oleic and palmitic acids. Soaps containing sodium salts are formed by heating fat (i.e., glyceryl ester of fatty acid) with aqueous sodium hydroxide solution. This reaction is known as saponification.

In this reaction, esters of fatty acids are hydrolysed and the soap obtained remains in colloidal form. It is precipitated from the solution by adding sodium chloride. The solution left after removing the soap contains glycerol, which can be recovered by fractional distillation. Only sodium and potassium soaps are soluble in water and are used for cleaning purposes. Generally potassium soaps are soft to the skin than sodium soaps. These can be prepared by using potassium hydroxide solution in place of sodium hydroxide.

Types of soaps

 Basically all soaps are made by boiling fats or oils with suitable soluble hydroxide. Variations are made by using different raw materials.

Toilet soaps are prepared by using better grades of fats and oils and care is taken to remove excess alkali. Colour and perfumes are added to make these more attractive.

Soaps that float in water are made by beating tiny air bubbles before their hardening. Transparent soaps are made by dissolving the soap in ethanol and then evaporating the excess solvent.

In medicated soaps, substances of medicinal value are added. In some soaps, deodorants are added. Shaving soaps contain glycerol to prevent rapid drying. A gum called, rosin is added while making them. It forms sodium rosinate which lathers well. Laundry soaps contain fillers like sodium rosinate, sodium silicate, borax and sodium carbonate.

Soap chips are made by running a thin sheet of melted soap onto a cool cylinder and scraping off the soaps in small broken pieces. Soap granules are dried miniature soap bubbles. Soap powders and scouring soaps contain some soap, a scouring agent (abrasive) such as powdered pumice or finely divided sand, and builders like sodium carbonate and trisodium phosphate. Builders make the soaps act more rapidly. The cleansing action of soap has been discussed in Unit 5.

Why do soaps not work in hard water?

Hard water contains calcium and magnesium ions. These ions form insoluble calcium and magnesium soaps respectively when sodium or potassium soaps are dissolved in hard water.


These insoluble soaps separate as scum in water and are useless as cleansing agent. In fact these are hinderance to good washing, because the precipitate adheres onto the fibre of the cloth as gummy mass. Hair washed with hard water looks dull because of this sticky precipitate. Dye does not absorb evenly on cloth washed with soap using hard water, because of this gummy mass.

16.5.2 Synthetic Detergents

Synthetic detergents are cleansing agents which have all the properties of soaps, but which actually do not contain any soap. These can be used both in soft and hard water as they give foam even in hard water. Some of the detergents give foam even in ice cold water.

Synthetic detergents are mainly classified into three categories:
(i) Anionic detergents (ii) Cationic detergents and (iii) Non-ionic detergents

 (i) Anionic Detergents: Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons. Alkyl hydrogensulphates formed by treating long chain alcohols with concentrated sulphuric acid are neutralised with alkali to form anionic detergents. Similarly alkyl benzene sulphonates are obtained by neutralising alkyl benzene sulphonic acids with alkali.



In anionic detergents, the anionic part of the molecule is involved in the cleansing action. Sodium salts of alkylbenzenesulphonates are an important class of anionic detergents.

They are mostly used for household work. Anionic detergents are also used in toothpastes.

 (ii) Cationic Detergents: Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions. Cationic part possess a long hydrocarbon chain and a positive charge on nitrogen atom. Hence, these are called cationic detergents. Cetyltrimethylammonium bromide is a popular cationic detergent and is used in hair conditioners.

Cationic detergents have germicidal properties and are expensive, therefore, these are of limited use.

 (iii) Non-ionic Detergents: Non-ionic detergents do not contain any ion in their constitution. One such detergent is formed when stearic acid reacts with polyethyleneglycol.


 

Liquid dishwashing detergents are non-ionic type. Mechanism of cleansing action of this type of detergents is the same as that of soaps. These also remove grease and oil by micelle formation.

Main problem that appears in the use of detergents is that if their hydrocarbon chain is highly branched, then bacteria cannot degrade this easily. Slow degradation of detergents leads to their accumulation. Effluents containing such detergents reach the rivers, ponds, etc. These persist in water even after sewage treatment and cause foaming in rivers, ponds and streams and their water gets polluted.

These days the branching of the hydrocarbon chain is controlled and kept to the minimum. Unbranched chains can be biodegraded more easily and hence pollution is prevented.

Intext Questions

16.4 Write the chemical equation for preparing sodium soap from glyceryl oleate and glyceryl palmitate. Structural formulae of these compounds are given below.

(i) (C15H31COO)3C3H5 – Glyceryl palmitate

(ii) (C17H32COO)3C3H5 – Glyceryl oleate

16.5 Following type of non-ionic detergents are present in liquid detergents, emulsifying agents and wetting agents. Label the hydrophilic and hydrophobic parts in the molecule. Identify the functional group(s) present in the molecule.

Summary

 Chemistry is essentially the study of materials and the development of new materials for the betterment of humanity. A drug is a chemical agent, which affects human metabolism and provides cure from ailment. If taken in doses higher than recommended, these may have poisonous effect. Use of chemicals for therapeutic effect is called chemotherapy. Drugs usually interact with biological macromolecules such as carbohydrates, proteins, lipids and nucleic acids. These are called target molecules. Drugs are designed to interact with specific targets so that these have the least chance of affecting other targets. This minimises the side effects and localises the action of the drug. Drug chemistry centres around arresting microbes/destroying microbes, preventing the body from various infectious diseases, releasing mental stress, etc. Thus, drugs like analgesics, antibiotics, antiseptics, disinfectants, antacids and tranquilizers are used for specific purpose. To check the population explosion, antifertility drugs have also become prominent in our life.

Food additives such as preservatives, sweetening agents, flavours, antioxidants, edible colours and nutritional supplements are added to the food to make it attractive, palatable and add nutritive value. Preservatives are added to the food to prevent spoilage due to microbial growth. Artificial sweeteners are used by those who need to check the calorie intake or are diabetic and want to avoid taking sucrose.

These days, detergents are much in vogue and get preference over soaps because they work even in hard water. Synthetic detergents are classified into three main categories, namely: anionic, cationic and non-ionic, and each category has its specific uses. Detergents with straight chain of hydrocarbons are preferred over branched chain as the latter are non-biodegradable and consequently cause environmental pollution.

Exercise

16.1 Why do we need to classify drugs in different ways ? 

16.2 Explain the term, target molecules or drug targets as used in medicinal chemistry.

16.3 Name the macromolecules that are chosen as drug targets.

16.4 Why should not medicines be taken without consulting doctors ?

16.5 Define the term chemotherapy.

16.6 Which forces are involved in holding the drugs to the active site of enzymes ? 

16.7 While antacids and antiallergic drugs interfere with the function of histamines, why do these not interfere with the function of each other ?

16.8 Low level of noradrenaline is the cause of depression. What type of drugs are needed to cure this problem ? Name two drugs.

16.9 What is meant by the term ‘broad spectrum antibiotics’ ? Explain.

16.10 How do antiseptics differ from disinfectants ? Give one example of each.

16.11 Why are cimetidine and ranitidine better antacids than sodium hydrogencarbonate or magnesium or aluminium hydroxide ? 

16.12 Name a substance which can be used as an antiseptic as well as disinfectant.

16.13 What are the main constituents of dettol ? 

16.14 What is tincture of iodine ? What is its use ?

16.15 What are food preservatives ?

16.16 Why is use of aspartame limited to cold foods and drinks ? 

16.17 What are artificial sweetening agents ? Give two examples.

16.18 Name the sweetening agent used in the preparation of sweets for a diabetic patient.

16.19 What problem arises in using alitame as artificial sweetener ?

16.20 How are synthetic detergents better than soaps ? 

16.21 Explain the following terms with suitable examples

(i) cationic detergents

(ii) anionic detergents and

(iii) non-ionic detergents.

16.22 What are biodegradable and non-biodegradable detergents ? Give one example of each. 

16.23 Why do soaps not work in hard water ?

16.24 Can you use soaps and synthetic detergents to check the hardness of water ?

16.25 Explain the cleansing action of soaps.

16.26 If water contains dissolved calcium hydrogencarbonate, out of soaps and synthetic detergents which one will you use for cleaning clothes ? 

16.27 Label the hydrophilic and hydrophobic parts in the following compounds. 

(i)

(ii)

(iii)

 

Intext Questions

Question 16.1:

Sleeping pills are recommended by doctors to the patients suffering from sleeplessness but it is not advisable to take its doses without consultation with the doctor, Why?

NEETprep Answer

 

 

Question 16.2:

With reference to which classification has the statement, ‘ranitidine is an antacid” been given?

NEETprep Answer

 

 

Question 16.3:

Why do we require artificial sweetening agents?

NEETprep Answer

 

 

Question 16.4:

Write the chemical equation for preparing sodium soap from glyceryl oleate and glyceryl palmitate. The structural formulae of these compounds are given below. 

NEETprep Answer

 

Question 16.5:

Following type of nom-ionic detergents are present in liquid detergents, emulsifying agents and wetting agents. Label the hydrophilic and hydrophobic parts in the molecule. Identify the functional group (s) present in the molecule. 

NEETprep Answer

Exercise

16.1 Why do we need to classify drugs in different ways?

NEETprep Answer

16.2 Explain the term, target molecules or drug targets as used in medicinal chemistry.

NEETprep Answer

16.3 Name the macromolecules that are chosen as drug targets.

NEETprep Answer

16.4 Why should not medicines be taken without consulting doctors?

NEETprep Answer

16.5 Define the term chemotherapy.

NEETprep Answer

16.6 Which forces are involved in holding the drugs to the active site of enzymes?

NEETprep Answer

16.7 While antacids and antiallergic drugs interfere with the function of histamines, why do these not interfere with the function of each other?

NEETprep Answer

16.8 Low level of noradrenaline is the cause of depression. What type of drugs are needed to cure this problem? Name two drugs.

NEETprep Answer

16.9 What is meant by the term ‘broad-spectrum antibiotics’? Explain.

NEETprep Answer

16.10 How do antiseptics differ from disinfectants? Give one example of each.

NEETprep Answer

16.11 Why are cimetidine and ranitidine better antacids than sodium hydrogen carbonate or magnesium or aluminum hydroxide?

NEETprep Answer

16.12 Name a substance which can be used as an antiseptic as well as a disinfectant.

NEETprep Answer

16.13 What are the main constituents of Dettol?

NEETprep Answer

16.14 What is the tincture of iodine? What is its use?

NEETprep Answer

16.15 What are food preservatives?

NEETprep Answer

16.16 Why is the use of aspartame limited to cold foods and drinks?

NEETprep Answer

16.17 What are artificial sweetening agents? Give two examples.

NEETprep Answer

16.18 Name the sweetening agent used in the preparation of sweets for a diabetic patient.

NEETprep Answer

16.19 What problem arises in using alitame as an artificial sweetener?

NEETprep Answer

16.20 How are synthetic detergents better than soaps?

NEETprep Answer

Exercise

16.21 Explain the following terms with suitable examples

(i) cationic detergents

(ii) anionic detergents and

(iii) non-ionic detergents.

NEETprep Answer

16.22 What are biodegradable and non-biodegradable detergents? Give one example of each.

NEETprep Answer

16.23 Why do soaps not work in hard water?

NEETprep Answer

16.24 Can you use soaps and synthetic detergents to check the hardness of water?

NEETprep Answer

16.25 Explain the cleansing action of soaps.

NEETprep Answer

16.26 If the water contains dissolved calcium hydrogen carbonate, out of soaps, and synthetic detergents which one will you use for cleaning clothes?

NEETprep Answer

16.27 Label the hydrophilic and hydrophobic parts in the following compounds.

(i)

(ii)

(iii)

Exemplar Question

 

Q.1 Which of the following statements is not correct?

(a) Some antiseptics can be added to soaps

(b) Dilute solutions of some disinfectants can be used as antiseptic

(c) Disinfectants are antimicrobial drugs

(d) Antiseptic medicines can be ingested

NEETprep Answer

 

 

Q.2 Which is the correct statement about birth control pills?

(a) Contain estrogen only

(b) Contain progesterone-only

(c) Contain a mixture of estrogen and progesterone derivatives

(d) Progesterone enhances ovulation

NEETprep Answer

 

 

Q.3 Which statement about aspirin is not true?

(a) Aspirin belongs to narcotic analgesics

(b) It is effective in relieving pain

(c)It has anti-blood-clotting action

(d) It is a neurologically active drug

NEETprep Answer

 

 

Q.4 The most useful classification of drugs for medicinal chemists is..

(a) on the basis of chemical structure

(b) on the basis of drug action

(c) on the basis of molecular targets

(d) on the basis of the pharmacological effect

NEETprep Answer

 

 

Q.5 Which of the following statements is correct?

(a) Some tranquilizers function by inhibiting the enzymes which catalyze the degradation of noradrenaline

(b) Tranquilizers are narcotic drugs

(c) Tranquilizers are chemical compounds that do not affect the message transfer from nerve to receptor

(d) Tranquilizers are chemical compounds that can relieve pain and fever.

NEETprep Answer

 

 

6 Salvarsan is an arsenic-containing drug that was first used for the treatment of.

(a) syphilis

(b) typhoid

(c) meningitis

(d) dysentery

NEETprep Answer

 

 

Q.7 A narrow-spectrum antibiotic is active against.

(a) gram-positive or gram-negative bacteria

(b) gram-negative bacteria only

(c)single organism or one disease

(d) both gram-positive and gram-negative bacteria

NEETprep Answer

 

 

Q. 8 The compound that causes general antidepressant action on the central nervous system belongs to the class of...

(a) analgesics

(b) tranquilizers

(c) narcotic analgesics

(d) antihistamines

NEETprep Answer

 

 

Q.9 Compound which is added to soap to impart antiseptic properties is

(a) sodium lauryl sulfate

(b) sodium dodecylbenzene sulphonate

(c) rosin

(d) bithional 

NEETprep Answer

 

 

Q. 10 Equanil is ................

(a) artificial sweetener

(b) tranquilizer

(c) antihistamine

(d) antifertility drug

NEETprep Answer

Exemplar Questions

 

Q.11 Which of the following enhances the leathering property of soap?

(a) Sodium carbonate

(b) Sodium resinate

(c)Sodium stearate

(d) Trisodium phosphate

NEETprep Answer

 

 

Q.12 Glycerol is added to soap. It functions

(a) as a filler

(b) to increases leathering

(c) to prevent rapid drying

(d) to make soap granules

NEETprep Answer

 

 

Q.13 Which of the following is an example of liquid dishwashing detergent?

NEETprep Answer

 

 

Q.14 Polyethyleneglycols are used in the preparation of which type of
detergents?

(a) Cationic detergents

(b) Anionic detergents

(c) Nonionic detergents

(d) Soaps

NEETprep Answer

 

 

 

Q.15 Which of the following is not a target molecule for drug function in
body?

(a) Carbohydrates

(b) Lipids

(c) Vitamins

(d) Proteins

NEETprep Answer

 

 

Q.16 Which of the following statements is not true about enzyme inhibitors?

(a) inhibit the catalytic activity of the enzyme

(b) Prevent the binding of substrate

(c) Generally a strong covalent bond is formed between an inhibitor and an enzyme

(d) Inhibitors can be competitive or non-competitive

NEETprep Answer

 

 

Q.17 Which of the following chemicals can be added for sweetening of food
items at cooking temperature and does not provide calories?

(a) Sucrose

(b) Glucose

(c) Aspartame

(d) Sucralose

NEETprep Answer

 

 

Q.18 Which of the following will not enhance the nutritional value of food?

(a) Minerals

(b) Artificial sweeteners

(c) Vitamins

(d) Amino acids

NEETprep Answer

 

 

Q.19 Which of the following statements are incorrect about receptor proteins?

(a) Majority of receptor proteins are embedded in the cell membranes

(b) The active site of receptor proteins opens on the inside region of the cell

(c) Chemical messengers are received at the binding sites of receptor proteins

(d) Shape of the receptor doesn't change during attachment of a messenger

NEETprep Answer

 

 

Q.20 Which of the following are not used as food preservatives?

(a) Table salt

(b) Sodium hydrogen carbonate

(c) Cane sugar

(d) Benzoic acid

NEETprep Answer

Exemplar Questions

 

 

Q.21 Compounds with antiseptic properties are ...

(a) CHCI3

(b) CHI3

(c) boric acid

(d) 0.3 ppm aqueous solution of Cl2,

NEETprep Answer

 

 

Q.22 Which of the following statements are correct about barbiturates?

(a) Hypnotics or sleep producing agents

(b) These are tranquilizers

(c) Non-narcotic analgesics

(d) Pain reducing without disturbing the nervous system

NEETprep Answer

 

 

Q.23 Which of the following are sulpha drugs?

(a) Sulphapyridine

(b) Prontosil

(c) Salvarsan

(d) Nardil

NEETprep Answer

 

 

Q.24 Which of the following are antidepressants?

(a) Iproniazid

(b) Phenelzine

(c) Equanil

(d) Salvarsan

NEETprep Answer

 

 

Q.25 Which of the following statements are incorrect about penicillin?

(a) An antibacterial fungus

(b) Ampicillin is its synthetic modification

(c) It has a bacteriostatic effect

(d) It is a broad-spectrum antibiotic

NEETprep Answer

 

 

Q.26 Which of the following compounds are administered as antacids?

(a) Sodium carbonate

(b) Sodium hydrogen carbonate

(c) Aluminium carbonate

(d) Magnesium hydroxide

NEETprep Answer

 

 

Q.27 Amongst the following antihistamines, which are antacids?

(a) Ranitidine

(b) Brompheniramine

(c) Terfenadine

(d) Cimetidine

NEETprep Answer

 

 

28 Veronal and luminal are derivatives of barbituric acid which are.

(a) tranquilizers

(b) non-narcotic analgesic

(c) anti-allergic drugs

(d) neurologically active drugs

NEETprep Answer

 

 

Q.29 Which of the following are anionic detergents

(a) Sodium salts of sulphonated long-chain alcohol

(b) Ester of stearic acid and polyethylene glycol

(c) Quarternary ammonium salt of the amine with acetate ion

(d) Sodium salts of sulphonated long-chain hydrocarbons

NEETprep Answer

 

 

Q.30 Which of the following statements is correct?

(a) Cationic detergents have germicidal properties

(b) Bacteria can degrade the detergents containing highly branched chains

(c) Some synthetic detergents can give foam even in ice-cold water

(d) Synthetic detergents are not soaps

NEETprep Answer

Exemplar Questions

 

 

Q.31 What is the average molecular mass of drugs?

NEETprep Answer

 

 

Q.32 Write the uses of medicines.

NEETprep Answer

 

 

Q.33 What are antiseptics?

NEETprep Answer

 

 

Q.34 Which type of drugs come under antimicrobial drugs

NEETprep Answer

 

 

Q.35 Where are receptors located?

NEETprep Answer

 

 

Q.36 What is the harmful effect of hyperacidity?

NEETprep Answer

 

 

Q.37 Which site of an enzyme is called an allosteric site?

NEETprep Answer

 

 

Q.38 What type of forces is involved in the binding of substrate to the active site of an enzyme?

NEETprep Answer

 

 

Q.39 What is the commonality between the antibiotic arsphenamine and azodye?

NEETprep Answer

 

 

Q.40 Which class of drugs is used in sleeping pills?

NEETprep Answer

Exemplar Questions

 

 

Q.41 Aspirin is a pain-relieving antipyretic drug but can be used to prevent heart attack. Explain.

NEETprep Answer

 

 

Q.42 Both antacids and antiallergic drugs are antihistamines but they cannot replace each other. Explain why?

NEETprep Answer

 

Q.43 What is a soft soap?

NEETprep Answer

 

 

Q.44 If the soap has high alkali content it irritates the skin. How can the amount of excess alkali be determined? What can be the source of excess alkali?

NEETprep Answer

 

 

Q.45 Explain why some times foaming is seen in never water near the place where sewage water is poured after treatment?

NEETprep Answer

 

 

Q.46 Which category of the synthetic detergents is used in toothpaste

NEETprep Answer

 

 

 

Q.47 Hair shampoos belong to which class of synthetic detergent?

NEETprep Answer

 

 

 

Q.48 Dishwashing soaps are synthetic detergents. What is their chemical
nature?

NEETprep Answer

 

 

Q.49 Draw the diagram showing micelle formation by the following detergent. CH3CH210CH20S0¯3, Na

NEETprep Answer

 

 

Q.50 How does the branching of the hydrocarbon chain of synthetic detergents affect their biodegradability?

NEETprep Answer

Exemplar Questions

 

 

Q.51 Why is it safer to use soap from the environmental point of view?

NEETprep Answer

 

 

Q.52 What are analgesics?

NEETprep Answer

 

 

Q. 53 What is the scientific explanation for the feeling of depression?

NEETprep Answer

 

 

Q.54 What is the basic difference between antiseptics and disinfectants?

NEETprep Answer

 

 

Q.55 Between sodium hydrogen carbonate and magnesium hydroxide which is a better antacid and why?

NEETprep Answer

 

 

Q.56 Which analgesics are called opiates?

NEETprep Answer

 

 

Q.57 What is the medicinal use of narcotic drugs?

NEETprep Answer

 

 

Q.58 What are antagonistic drugs?

NEETprep Answer

 

 

Q.59 What is the mode of action of antimicrobial drugs?

NEETprep Answer

 

 

Q.60 What is the side product of the soap industry? Give reactions showing soap formation.

NEETprep Answer

Exemplar Questions

 

 

Q.61 What is the difference between bathing soap and washing soaps?

NEETprep Answer

 

 

Q.62 How are transparent soaps manufactured?

NEETprep Answer

 

 

Q.63 What is the advantage of using antihistamines over antacids in the treatment of acidity?

NEETprep Answer

 

 

Q.64 What are the functions performed by histamine in the body?

NEETprep Answer

 

 

Q.65 With the help of an example explain how do tranquilizers control the feeling of depression?

NEETprep Answer

 

 

Q.66 Why are certain drugs called enzyme inhibitors?

NEETprep Answer

 

 

Q.67 What are fillers and what role these fillers play in soap?

NEETprep Answer

 

 

Q.68 Sugar is the main source of energy as it produces energy on metabolic decomposition. But these days low-calorie drinks are more popular, why?

NEETprep Answer

 

 

Q.69 Pickles have a long shelf life and do not get spoiled for months, why?

NEETprep Answer

 

 

Q.70 What is the difference between saccharin and saccharic acid?

NEETprep Answer

Exemplar Questions

 

 

Q.71 Name an artificial sweetener which is a derivative of sucrose.

NEETprep Answer

 

 

Q.72 Name two o-amino acids that form a dipeptide which is 100 times sweeter than cane sugar?

NEETprep Answer

 

 

Q.73 Aspartame is unstable at cooking temperature, where would you suggest aspartame to be used for sweetening?

NEETprep Answer

 

 

Q.74 Sodium salts of some acids are very useful as food preservatives. Suggest a few such acids.

NEETprep Answer

 

 

Q.75 Explain the role of the allosteric sites in enzyme inhibition?

NEETprep Answer

 

 

Q.76 How are receptor proteins located in the cell membrane

NEETprep Answer

 

 

Q.77 What happens when the bond formed between an enzyme and an inhibitor is a strong covalent bond?

NEETprep Answer

 

 

Q.78 Match the medicines given in Column I with their uses given in Column II

         Column I             Column II

A. Ranitidine            1. Tranquilizer 
B. Furacine              2. Antibiotic 
C. Phenelzine           3. Antihistamine
D. Chloramphenicol  4. Antiseptic 
                              5. Antifertility drug

NEETprep Answer

 

 

Q.79 Match the soaps given in Column I with items given in column II.

       Column I                  Column II

A. Soap chips         1. dried miniature soap bubbles
B. Soap granules    2. small broken pieces of soap formed from melted soaps
C. Soap powder      3. soap powder + abrasives+builders (Na2CO3, Na3PO4)
D. Scouring soap    4. soap powder + builders like Na2CO3, and Na3PO4

NEETprep Answer

 

 

Q.80 Match structures are given in Column I with the type of detergents given in Column II.

 

Column I

Column II

A. CH3CH216COOCH2CH2On CH2CH2OH

1. Cationic detergent

B. C17H35COO-Na+

2. Anionic detergent

C. CH3 - CH210CH2SO3-Na+

3. Nonionic detergent

D.                           CH3                            |CH3CH215 - N - CH3                            |                          CH3+ Br-

4. Soap

 

NEETprep Answer

Exemplar Questions

 

Q.81 Match the detergents given in Column I with their uses in Column II.

 

Column I

Column II

A.                          CH3                            |CH3CH215 - N - CH3                            |                          CH3+ Br-

1. Dishwashing powder

B. 

2. Laundry soap

C. C17H35COON+a + Na2CO3 + Rosin

3. Hair conditioners

D. CH3CH216COOCH2CH2On CH2CH3OH

4. Toothpaste

 

NEETprep Answer

 

 

Q.82 Match the class of compounds given in Column I with their functions given in Column II.

       Column I                             Column II

A. Antagonists                1. Communicate messages between two neurons and that between neurons to muscles. 
B. Agonists                     2. Bind to the receptor site and inhibit its natural function. 
C. Chemical messenger   3. Crucial to the body's communication process.
D. Inhibitors                   4. Mimic the natural messenger.
E. Receptors                   5. Inhibit the activities of enzymes

NEETprep Answer

 

 

Q.83 Match the classes of drugs are given in Column I with their action given in Column II.

        Column I                       Column II

A. Analgesics          1. Inhibit the growth of microorganisms can be given orally 
B. Antiseptics          2.  Treatment of stress
C. Antihistamines    3. Applied to inanimate objects 
D. Antacids             4. Prevents the interaction of histamine with its receptor  
E. Tranquilizers       5. Painkilling effect
F. Antibiotics           6. Applied to diseased skin surfaces 
G. Disinfectants      7. Treatment of acidity

NEETprep Answer

 

 

Assertion and Reason

In the following questions, a statement of assertion (A) followed by a statement of the reason (R) is given. Choose the correct answer out of the following choices.

(a) Assertion and reason both are correct statements but reason does not explain assertion.

(b) Assertion and reason both are correct and reason explains the assertion.

(c) Both assertion and reason are wrong statements.

(d) Assertion is the correct statement reason is the wrong statement.

(e) Assertion is the wrong statement reason is the correct statement.

 

 

Q.84 Assertion (A) Penicillin (G) is an antihistamine.

Reason (R) Penicillin (G) is effective against gram-positive as well as gram-negative bacteria.

NEETprep Answer

 

 

Q. 85 Assertion (A) Sulpha drug contains a sulphonamide group.

Reason (R) Salvarsan is a sulpha drug.

NEETprep Answer

 

 

Q.86 Assertion (A) Receptors are crucial to the body's communication process.

Reason (R) Receptors are proteins.

NEETprep Answer

 

 

Q.87 Assertion (A) Enzymes have active sites that hold substrate molecules for a chemical reaction.

Reason (R) Drugs Compete with the natural substrate by attaching covalently to the active site of the enzyme

NEETprep Answer

 

 

Q.88 Assertion (A) Chemical messengers are chemicals that enable communication of messages between two neurons or between neurons and muscles.

Reason (R) Chemicals enter the cell through the receptor.

NEETprep Answer

 

 

Q.89 Assertion (A) Transparent soaps are made by dissolving soaps in ethanol.

Reason (R) Ethanol makes things invisible.

NEETprep Answer

 

 

Q.90 Assertion (A) Sodium chloride is added to precipitate soap after saponification.

Reason (R) Hydrolysis of esters of long-chain fatty acids by alkali produces Soap in colloidal form.

NEETprep Answer

Exemplar Questions

 

 

Assertion and Reason

In the following questions, a statement of assertion (A) followed by a statement of the reason (R) is given. Choose the correct answer out of the following choices.

(a) Assertion and reason both are correct statements but reason does not explain assertion.

(b) Assertion and reason both are correct and reason explains the assertion.

(c) Both assertion and reason are wrong statements.

(d) Assertion is the correct statement reason is the wrong statement.

(e) Assertion is the wrong statement reason is the correct statement.

 

 

Q.91 Assertion (A) Competitive inhibitors compete with the natural substrate for their attachment on the active sites of enzymes.

Reason (R) In competitive inhibition, the inhibitor binds to the allosteric site of the enzyme.

NEETprep Answer

 

 

Q.92 Assertion (A) Non-competitive inhibitor inhibits the catalytic activity of the enzyme by binding with its active site.

Reason (R) Non-competitive inhibitor changes the shape of the active site in such a way that the substrate can't recognize it.

NEETprep Answer

 

 

Q.93 Assertion (A) Chemical messenger gives a message to the cell without entering the cell.

Reason (R) Chemical messenger is received at the binding site of receptor proteins.

NEETprep Answer

 

 

Q.94 Assertion (A) Receptor proteins show selectivity for one chemical messenger over the other.

Reason (R) Chemical messenger binds to the receptor site and inhibits its natural function.

NEETprep Answer

 

 

Q.95 Assertion (A) All chemicals added to food items are called food preservatives.

Reason (R) All these chemicals increase the nutritive value of the food.

NEETprep Answer

 

 

Q.96 Assertion (A) Preservative is added to food items.

Reason (R) Preservatives inhibit the growth of microorganisms.

NEETprep Answer

 

 

Q.97 Assertion (A) Artificial sweeteners are added to the food to control the intake of calories.

Reason (R) Most of the artificial sweeteners are inert and do not metabolize in the body.

NEETprep Answer

 

 

Q.98 In what respect do prontosil and salvarsan resemble. Is there any resemblance between azo dye and prontosil? Explain.

NEETprep Answer

 

 

Q.99 How do enzymes catalyze a chemical reaction in the living system? Explain drug target interaction taking the example of the enzyme as a target.

NEETprep Answer

 

 

Q.100 Synthetic detergents have an advantage over usual soaps as far as cleansing power is concerned. But the use of synthetic detergents over a long time creates environmental pollution. How can the pollution caused by synthetic detergents be minimized? Classify the detergents according to their chemical nature.

NEETprep Answer

 

 

Q.101 What are enzyme inhibitors? Classify them on the basis of their mode of attachments on the active site of enzymes. With the help of diagrams explains how do inhibitors inhibit the enzymatic activity.

NEETprep Answer