A sample of \(0.1\) g of water at \(100^{\circ}\mathrm{C}\) and normal pressure (\(1.013 \times10^5\) N m–2) requires \(54\) cal of heat energy to convert it into steam at \(100^{\circ}\mathrm{C}\). If the volume of the steam produced is \(167.1\) cc, then the change in internal energy of the sample will be:
1. \(104.3\) J
2. \(208.7\) J
3. \(42.2\) J
4. \(84.5\) J
One mole of an ideal monatomic gas undergoes a process described by the equation \(PV^3=\text{constant}.\) The heat capacity of the gas during this process is:
1. \(\frac{3}{2}R\)
2. \(\frac{5}{2}R\)
3. \(2R\)
4. \(R\)
The temperature inside a refrigerator (reversible process) is t2oC and the room temperature is t1oC. The amount of heat delivered to the room for each joule of electrical energy consumed, ideally, will be:
1.
2.
3.
4.
The volume \((V)\) of a monatomic gas varies with its temperature \((T),\) as shown in the graph. The ratio of work done by the gas to the heat absorbed by it when it undergoes a change from state \(A\) to state \(B\) will be:
1. | \(\dfrac{2}{5}\) | 2. | \(\dfrac{2}{3}\) |
3. | \(\dfrac{1}{3}\) | 4. | \(\dfrac{2}{7}\) |
The efficiency of an ideal heat engine (Carnot heat engine) working between the freezing point and boiling point of water is:
1. \(26.8\%\)
2. \(20\%\)
3. \(6.25\%\)
4. \(12.5\%\)
A gas is compressed isothermally to half its initial volume. The same gas is compressed separately through an adiabatic process until its volume is again reduced to half. Then,
1. | compressing the gas through an adiabatic process will require more work to be done. |
2. | compressing the gas isothermally or adiabatically will require the same amount of work. |
3. | which of the case (whether compression through isothermal or through the adiabatic process) requires more work will depend upon the atomicity of the gas. |
4. | compressing the gas isothermally will require more work to be done. |
An ideal gas is compressed to half its initial volume using several processes. Which of the processes results in the maximum work done on the gas?
1. adiabatic
2. isobaric
3. isochoric
4. isothermal
1. | \(64P\) | 2. | \(32P\) |
3. | \(\frac{P}{64}\) | 4. | \(16P\) |
A thermodynamic system undergoes a cyclic process \(ABCDA\) as shown in Fig. The work done by the system in the cycle is:
1. \( P_0 V_0 \)
2. \( 2 P_0 V_0 \)
3. \( \frac{P_0 V_0}{2} \)
4. zero