If \(M(A,~Z)\), \(M_p\), and \(M_n\) denote the masses of the nucleus \(^{A}_{Z}X,\) proton, and neutron respectively in units of \(u\) \((1~u=931.5~\text{MeV/c}^2)\) and represent its binding energy \((BE)\) in \(\text{MeV}\). Then:
1. | \(M(A, Z) = ZM_p + (A-Z)M_n- \dfrac{BE}{c^2}\) |
2. | \(M(A, Z) = ZM_p + (A-Z)M_n+ BE\) |
3. | \(M(A, Z) = ZM_p + (A-Z)M_n- BE\) |
4. | \(M(A, Z) = ZM_p + (A-Z)M_n+ \dfrac{BE}{c^2}\) |
The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an:
1. | isobar of a parent. | 2. | isomer of a parent. |
3. | isotone of a parent. | 4. | isotope of a parent. |
If the nuclear radius of \(^{27}\text{Al}\) is \(3.6\) Fermi, the approximate nuclear radius of \(^{64}\text{Cu}\) in Fermi is:
1. \(2.4\)
2. \(1.2\)
3. \(4.8\)
4. \(3.6\)
1. | \(1.5\times 10^{17}\) | 2. | \(3\times 10^{19}\) |
3. | \(1.5\times 10^{25}\) | 4. | \(3\times 10^{25}\) |
The Binding energy per nucleon of \(^{7}_{3}\mathrm{Li}\) and \(^{4}_{2}\mathrm{He}\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}\mathrm{Li} + ^{1}_{1}\mathrm{H} \rightarrow ^{4}_{2}\mathrm{He} + ^{4}_{2}\mathrm{He} +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)
If the radius of \(_{13}^{27}\mathrm{Al}\) nucleus is taken to be \({R}_{\mathrm{Al}},\) then the radius of \(_{53}^{125}\mathrm{Te}\) nucleus is near:
1. | \(\left(\frac{53}{13}\right) ^{\frac{1}{3}}~{R_{Al}}\) | 2. | \(\frac{5}{3}~{R_{Al}}\) |
3. | \(\frac{3}{5}~{R_{Al}}\) | 4. | \(\left(\frac{13}{53}\right)~{R_{Al}}\) |
1. | electron | 2. | positron |
3. | proton | 4. | neutron |