The determination of the value of acceleration due to gravity \((g)\) by simple pendulum method employs the formula,
\(g=4\pi^2\frac{L}{T^2}\)
The expression for the relative error in the value of \(g\) is:
1. \(\frac{\Delta g}{g}=\frac{\Delta L}{L}+2\Big(\frac{\Delta T}{T}\Big)\)
2. \(\frac{\Delta g}{g}=4\pi^2\Big[\frac{\Delta L}{L}-2\frac{\Delta T}{T}\Big]\)
3. \(\frac{\Delta g}{g}=4\pi^2\Big[\frac{\Delta L}{L}+2\frac{\Delta T}{T}\Big]\)
4. \(\frac{\Delta g}{g}=\frac{\Delta L}{L}-2\Big(\frac{\Delta T}{T}\Big)\)
| 1. | The dimensions of \(\beta\) are same as that of force. |
| 2. | The dimensions of \(\alpha^{-1}x\) are same as that of energy. |
| 3. | The dimensions of \(\eta^{-1} \sin \theta\) are same as that of \(\alpha \beta\). |
| 4. | The dimensions of \(\alpha\) same as that of \(\beta\). |
| 1. | \(\dfrac P V\) | 2. | \(\dfrac V P\) |
| 3. | \(PV\) | 4. | \(PV^3\) |
| 1. | \(2.42\times10^{-6} \) rad | 2. | \(2.85\times10^{-6} \) rad |
| 3. | \(2.91\times10^{-4} \) rad | 4. | \(1.75\times10^{-2} \) rad |
| List-I | List-II |
| A. Torque | I. N-m s-1 |
| B. Stress | II. J-kg-1 |
| C. Latent Heat | III. N-m |
| D. Power | IV. N-m-2 |
| 1. | A-III, B-II, C-I, D-IV |
| 2. | A-III, B-IV, C-II, D-I |
| 3. | A-IV, B-I, C-III, D-II |
| 4. | A-II, B-III, C-I, D-IV |
| 1. | \(1\) | 2. | \(2\) |
| 3. | \(3\) | 4. | \(5\) |