Given below are two statements:
| Statement I: | Three vectors equal in magnitude cannot produce zero resultant. | 
| Statement II: | Minimum four vectors are required to produce zero resultant. | 
| 1. | Statement I is false but Statement II is true. | 
| 2. | Both Statement I and Statement II are true. | 
| 3. | Both Statement I and Statement II are false. | 
| 4. | Statement I is true but Statement II is false. | 
Given below are two statements:
| Statement I: | Every vector must possess both magnitude and direction. | 
| Statement II: | A physical quantity with zero magnitude cannot be classified as a vector. | 
| 1. | Statement I is False but Statement II is True. | 
| 2. | Both Statement I and Statement II are True. | 
| 3. | Both Statement I and Statement II are False. | 
| 4. | Statement I is True but Statement II is False. | 
If \(\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{C} + \overrightarrow{D}\), then which of the following statement is correct?
| 1. | \(\overrightarrow B\) must be perpendicular to \(\overrightarrow C\) | 
| 2. | \(\overrightarrow A\) must be perpendicular to \(\overrightarrow C\) | 
| 3. | Component of \(\overrightarrow C\) along \(\overrightarrow A\) = Component of \(\overrightarrow D\) along \(\overrightarrow A\) | 
| 4. | Component of \(\overrightarrow C\) along \(\overrightarrow A\) = - (Component of \(\overrightarrow D\) along \(\overrightarrow A\)) | 
What is the maximum value of \(5\sin\theta-12\cos\theta\)?
1. \(12\)
2. \(17\)
3. \(7\)
4. \(13\)
Given are two vectors, \(\overrightarrow{A} =   \left(\right. 2 \hat{i}   -   5 \hat{j}   +   2 \hat{k} \left.\right)\) and \(\overrightarrow{B} =   \left(4 \hat{i}   -   10 \hat{j}   +   c \hat{k} \right).\) What should be the value of \(c\) so that vector \(\overrightarrow A \) and \(\overrightarrow B\) would becomes parallel to each other?
1. \(1\)
2. \(2\) 
3. \(3\)
4. \(4\) 
Two forces of the same magnitude are acting on a body in the East and North directions, respectively. If the body remains in equilibrium, then the third force should be applied in the direction of:
1. North-East
2. North-West
3. South-West
4. South-East
If is the resultant of two vectors and ' is the difference in them, and , then:
(1)
(2)
(3) is antiparallel to
(4) makes an angle of 120° with
If \(\left|\overrightarrow A\right|\ne \left|\overrightarrow B\right|\) and \(\left|\overrightarrow A \times \overrightarrow B\right|= \left|\overrightarrow A\cdot \overrightarrow B\right|\), then:
| 1. | \(\overrightarrow A \perp \overrightarrow B\) | 
| 2. | \(\overrightarrow A ~|| ~\overrightarrow B\) | 
| 3. | \(\overrightarrow A\) is antiparallel to \(\overrightarrow B\) | 
| 4. | \(\overrightarrow A\) is inclined to \(\overrightarrow B\) at an angle of \(45^{\circ}\) | 
If \(\overrightarrow {A}\)  \(\overrightarrow{B}\) are two vectors inclined to each other at an angle \(\theta,\) then the component of \(\overrightarrow {A}\) perpendicular to \(\overrightarrow {B}\) and lying in the plane containing \(\overrightarrow {A}\) and \(\overrightarrow {B}\) will be:
1. \(\frac{\overrightarrow {A} \overrightarrow{.B}}{B^{2}} \overrightarrow{B}\)
2. \(\overrightarrow{A}   -   \frac{\overrightarrow{A} \overrightarrow{.B}}{B^{2}} \overrightarrow{B}\)
3. \(\overrightarrow{A} -\overrightarrow{B}\)
4. \(\overrightarrow{A} + \overrightarrow{B}\)
A force of \(20\) N acts on a particle along a direction, making an angle of \(60^\circ\) with the vertical. The component of the force along the vertical direction will be:
| 1. | \(2\) N | 2. | \(5\) N | 
| 3. | \(10\) N | 4. | \(20\) N |