The potential difference \(V_{A}-V_{B}\) between the points \({A}\) and \({B}\) in the given figure is:
1. | \(-3~\text{V}\) | 2. | \(+3~\text{V}\) |
3. | \(+6~\text{V}\) | 4. | \(+9~\text{V}\) |
\({A, B}~\text{and}~{C}\) are voltmeters of resistance \(R,\) \(1.5R\) and \(3R\) respectively as shown in the figure above. When some potential difference is applied between \({X}\) and \({Y},\) the voltmeter readings are \({V}_{A},\) \({V}_{B}\) and \({V}_{C}\) respectively. Then:
1. | \({V}_{A} ={V}_{B}={V}_{C}\) | 2. | \({V}_{A} \neq{V}_{B}={V}_{C}\) |
3. | \({V}_{A} ={V}_{B}\neq{V}_{C}\) | 4. | \({V}_{A} \ne{V}_{B}\ne{V}_{C}\) |
Statement I: | Kirchhoff’s current law is a consequence of the conservation of energy as applied to electric circuits. |
Statement II: | Kirchhoff’s voltage law is a consequence of the conservation of charge. |
1. | Statement I is incorrect and Statement II is correct. |
2. | Both Statement I and Statement II are correct. |
3. | Both Statement I and Statement II are incorrect. |
4. | Statement I is correct and Statement II is incorrect. |