1. | \(2\) protons only |
2. | \(2\) protons and \(2\) neutrons only |
3. | \(2\) electrons, \(2\) protons, and \(2\) neutrons |
4. | \(2\) electrons and \(4\) protons only |
1. | \({ }_{7}^{14} \mathrm{N}\) | 2. | \({ }_{5}^{13} \mathrm{B}\) |
3. | \({ }_{7}^{13} \mathrm{N}\) | 4. | \({ }_{6}^{13} \mathrm{C}\) |
1. | \({ }_{12}^{22} \mathrm{Mg}\) | 2. | \({ }_{11}^{23} \mathrm{Na}\) |
3. | \({ }_{10}^{23} \mathrm{Ne}\) | 4. | \(_{10}^{22}\textrm{Ne}\) |
What happens to the mass number and the atomic number of an element when it emits \(\gamma\text{-}\)radiation?
1. | mass number decreases by four and atomic number decreases by two. |
2. | mass number and atomic number remain unchanged. |
3. | mass number remains unchanged while the atomic number decreases by one. |
4. | mass number increases by four and the atomic number increases by two. |
1. | electron | 2. | positron |
3. | proton | 4. | neutron |
1. | \(\beta^{+}, ~\alpha, ~\beta^{-}\) | 2. | \(\beta^{-}, ~\alpha, ~\beta^{+}\) |
3. | \(\alpha, ~\beta^{-},~\beta^{+}\) | 4. | \(\alpha, ~\beta^{+},~\beta^{-}\) |
1. | \(e^+, \alpha, e^-, \alpha , \gamma \) | 2. | \(e^-, \alpha, e^+, \alpha , \gamma \) |
3. | \(\alpha ,e^-, \alpha, e^+, \gamma \) | 4. | \(\alpha ,e^+, \alpha, e^-, \gamma \) |
The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an:
1. | isobar of a parent. | 2. | isomer of a parent. |
3. | isotone of a parent. | 4. | isotope of a parent. |