In a cyclic process, the internal energy of the gas:
1. | increases | 2. | decreases |
3. | remains constant | 4. | becomes zero |
When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas is:
1. | \(\dfrac{2}{5}\) | 2. | \(\dfrac{3}{5}\) |
3. | \(\dfrac{3}{7}\) | 4. | \(\dfrac{5}{7}\) |
In the following figures, four curves A, B, C and D, are shown. The curves are:
1. | isothermal for A and D while adiabatic for B and C. |
2. | adiabatic for A and C while isothermal for B and D. |
3. | isothermal for A and B while adiabatic for C and D. |
4. | isothermal for A and C while adiabatic for B and D. |
Two identical samples of a gas are allowed to expand, (i) isothermally and (ii) adiabatically. The work done will be:
1. | more in the isothermal process. |
2. | more in the adiabatic process. |
3. | equal in both processes. |
4. | none of the above. |
The specific heat of a gas in an isothermal process is:
1. | Infinite | 2. | Zero |
3. | Negative | 4. | Remains constant |
An ideal gas goes from state \(A\) to state \(B\) via three different processes, as indicated in the \(P\text-V\) diagram. If \(Q_1,Q_2,Q_3\) indicates the heat absorbed by the gas along the three processes and \(\Delta U_1, \Delta U_2, \Delta U_3\) indicates the change in internal energy along the three processes respectively, then:
1. | \({Q}_1>{Q}_2>{Q}_3 \) and \(\Delta {U}_1=\Delta {U}_2=\Delta {U}_3\) |
2. | \({Q}_3>{Q}_2>{Q}_1\) and \(\Delta {U}_1=\Delta {U}_2=\Delta {U}_3\) |
3. | \({Q}_1={Q}_2={Q}_3\) and \(\Delta {U}_1>\Delta {U}_2>\Delta {U}_3\) |
4. | \({Q}_3>{Q}_2>{Q}_1\) and \(\Delta {U}_1>\Delta {U}_2>\Delta {U}_3\) |
Column I | Column II | ||
\(P\). | Process-I | \(\mathrm{a}\). | Adiabatic |
\(Q\). | Process-II | \(\mathrm{b}\). | Isobaric |
\(R\). | Process-III | \(\mathrm{c}\). | Isochoric |
\(S\). | Process-IV | \(\mathrm{d}\). | Isothermal |
1. | \(P \rightarrow \mathrm{a}, Q \rightarrow \mathrm{c}, R \rightarrow \mathrm{d}, S \rightarrow \mathrm{b}\) |
2. | \(P \rightarrow \mathrm{c}, Q \rightarrow \mathrm{a}, R \rightarrow \mathrm{d}, S \rightarrow b\) |
3. | \(P \rightarrow \mathrm{c}, Q \rightarrow \mathrm{d}, R \rightarrow \mathrm{b}, S \rightarrow \mathrm{a}\) |
4. | \(P \rightarrow \mathrm{c}, Q \rightarrow \mathrm{d}, R \rightarrow \mathrm{b}, S \rightarrow \mathrm{a}\) |
A sample of \(0.1\) g of water at \(100^{\circ}\mathrm{C}\) and normal pressure (\(1.013 \times10^5\) N m–2) requires \(54\) cal of heat energy to convert it into steam at \(100^{\circ}\mathrm{C}\). If the volume of the steam produced is \(167.1\) cc, then the change in internal energy of the sample will be:
1. \(104.3\) J
2. \(208.7\) J
3. \(42.2\) J
4. \(84.5\) J
One mole of an ideal monatomic gas undergoes a process described by the equation \(PV^3=\text{constant}.\) The heat capacity of the gas during this process is:
1. \(\frac{3}{2}R\)
2. \(\frac{5}{2}R\)
3. \(2R\)
4. \(R\)
The volume \((V)\) of a monatomic gas varies with its temperature \((T),\) as shown in the graph. The ratio of work done by the gas to the heat absorbed by it when it undergoes a change from state \(A\) to state \(B\) will be:
1. | \(\dfrac{2}{5}\) | 2. | \(\dfrac{2}{3}\) |
3. | \(\dfrac{1}{3}\) | 4. | \(\dfrac{2}{7}\) |