A body of mass \(5\) kg is suspended by the strings making angles \(60^\circ\)
Then:
(A) | \( {T}_1=25~ \text{N} \) |
(B) | \( {T}_2=25 ~\text{N} \) |
(C) | \({T}_1=25 \sqrt{3}~ \text{N} \) |
(D) | \({T}_2=25 \sqrt{3}~ \text{N} \) |
1. | (A), (B), and (C) only |
2. | (A) and (B) only |
3. | (A) and (D) only |
4. | (A), (B), (C), (D) |
A string of negligible mass going over a clamped pulley of mass \(m\) supports a block of mass \(M\) as shown in the figure. The force on the pulley by the clamp is given by:
1. \(\sqrt{2} M g\)
2. \(\sqrt{2} m g\)
3. \(g\sqrt{\left( M + m \right)^{2} + m^{2}}\)
4. \(g\sqrt{\left(M + m \right)^{2} + M^{2}}\)
If the tension in the cable supporting an elevator is equal to the weight of the elevator, the elevator may be:
(a) | going up with increasing speed |
(b) | going down with increasing speed |
(c) | going up with uniform speed |
(d) | going down with uniform speed |
Choose the correct option:
1. (a) and (b)
2. (b) and (c)
3. (c) and (d)
4. all of the above
1. | \(mg\sin60^\circ\) | 2. | \(mg\cos60^\circ\) |
3. | \(mg\tan60^\circ\) | 4. | \(mg\cot60^\circ\) |