A short magnetic dipole of a magnetic dipole moment \({M}_{0} \hat{i}\) is placed at the origin. The Magnetic field intensity at a point with a position vector \(\alpha \hat{j}+\beta\hat{k}\) is:
| 1. | \(-\dfrac{\mu_{0}{M}_{0}}{4 \pi\left(\alpha^{2}+\beta^{2}\right)^{3 / 2}}\hat{i}\) |
| 2. | \(\dfrac{\mu_{0}{M}_{0}}{2\pi\left(\alpha^{2}+\beta^{2}\right)^{3 / 2}}\hat{i}\) |
| 3. | \(\dfrac{\mu_{0}{M}_{0}}{4 \pi\left(\alpha^{2}+\beta^{2}\right)^{3 / 2}}\hat{i}\) |
| 4. | Zero |
| 1. | \(6 \times 10^{-4}\) T | 2. | \(1.5 \times 10^{-4}\) T |
| 3. | \(3 \sqrt2 \times 10^{-4}\) T | 4. | \({\dfrac 3 {\sqrt 2}}\times 10^{-4}\) T |
| 1. | all the domains grow in size. |
| 2. | all the domains shrink in size. |
| 3. | some domains grow in size, others shrink. |
| 4. | domains rotate in the magnetic field. |
| 1. | \(0.75~\text{A}\) | 2. | \(75~\text{A}\) |
| 3. | \(1.33~\text{A}\) | 4. | \(133~\text{A}\) |
| 1. | attractive. |
| 2. | repulsive. |
| 3. | zero. |
| 4. | any of the above depending on the external field \(B\) and the sample separation. |
| 1. | \(E_B\cdot\tau_B\) | 2. | \(\dfrac{E_B}{\tau_B}\) |
| 3. | \(E_B^2+\tau_B^2\) | 4. | \(E_B^2-\tau_B^2\) |
| 1. | \(\dfrac{r_1}{r_2}=\dfrac{P_1}{P_2}\) |
| 2. | \(\left(\dfrac{r_1}{r_2}\right)^2=\dfrac{P_1}{P_2} \) |
| 3. | \(\left(\dfrac{r_1}{r_2}\right)^3=\dfrac{P_1}{P_2} \) |
| 4. | none of the above is true. |
| 1. | increases |
| 2. | decreases |
| 3. | remains unchanged |
| 4. | decreases first and then increases |