| 1. | increases |
| 2. | decreases |
| 3. | remains unchanged |
| 4. | decreases first and then increases |
| 1. | \(\dfrac{\pi}{\mu_0}\left(B_eR^3\right )\) | 2. | \(\dfrac{2\pi}{\mu_0}\left(B_eR^3\right )\) |
| 3. | \(\dfrac{4\pi}{\mu_0}\left(B_eR^3\right )\) | 4. | \(\dfrac{2}{\mu_0}\left(B_eR^3\right )\) |
| 1. | force along +ve \(y\text-\)axis |
| 2. | force along -ve \(y\text-\)axis |
| 3. | zero force but a clockwise torque |
| 4. | zero force but an anticlockwise torque |
| 1. | increased |
| 2. | decreased |
| 3. | unchanged |
| 4. | fluctuating with time: first increasing and then decreasing |
| 1. | \(\dfrac{r_1}{r_2}=\dfrac{P_1}{P_2}\) |
| 2. | \(\left(\dfrac{r_1}{r_2}\right)^2=\dfrac{P_1}{P_2} \) |
| 3. | \(\left(\dfrac{r_1}{r_2}\right)^3=\dfrac{P_1}{P_2} \) |
| 4. | none of the above is true. |
| 1. | \(E_B\cdot\tau_B\) | 2. | \(\dfrac{E_B}{\tau_B}\) |
| 3. | \(E_B^2+\tau_B^2\) | 4. | \(E_B^2-\tau_B^2\) |
| 1. | attractive. |
| 2. | repulsive. |
| 3. | zero. |
| 4. | any of the above depending on the external field \(B\) and the sample separation. |
| 1. | \(0.75~\text{A}\) | 2. | \(75~\text{A}\) |
| 3. | \(1.33~\text{A}\) | 4. | \(133~\text{A}\) |