The relation between two specific heats (in cal/mol) of a gas is:
1.  CP-CV=RJ                               

2.  CV-CP=RJ

3.  CP-CV=J                                 

4.  CV-CP=J

Subtopic:  Specific Heat |
 89%
Level 1: 80%+
Hints

The ratio of the specific heats \(\frac{C_P}{C_V}=\gamma\) in terms of degrees of freedom \((n)\) is given by:
1. \(1+1/n\)
2. \(1+n/3\)
3. \(1+2/n\)
4. \(1+n/2\)

Subtopic:  Specific Heat |
 83%
Level 1: 80%+
NEET - 2015
Hints

Given below are two statements: 
Assertion (A): The ratio \(C_p\over C_v\) is more for helium gas than for hydrogen gas.
Reason (R): Atomic mass of helium is more than that of hydrogen.
1. Both (A) and (R) are True and (R) is the correct explanation of (A).
2. Both (A) and (R) are True but (R) is not the correct explanation of (A).
3. (A) is True but (R) is False.
4. Both (A) and (R) are False.
Subtopic:  Specific Heat |
 76%
Level 2: 60%+
Hints

advertisementadvertisement

The figure shows a process for a gas in which pressure (P) and volume (V) of the gas change. If C1 and C2 are the molar heat capacities of the gas during the processes AB and BC respectively, then:

1. C1=C2

2. C1>C2

3. C1<C2

4. C1C2

Subtopic:  Specific Heat |
 66%
Level 2: 60%+
Hints

The specific heat of an ideal gas is:

1.  proportional to T.                     

2.  proportional to T2.

3.  proportional to T3.                  

4.  independent of T.

Subtopic:  Specific Heat |
 65%
Level 2: 60%+
Hints

If \(C_P\) and \(C_V\) denote the specific heats (per unit mass) of an ideal gas of molecular weight \(M\) (where \(R\) is the molar gas constant), the correct relation is:
1. \(C_P-C_V=R\)
2. \(C_P-C_V=\frac{R}{M}\)
3. \(C_P-C_V=MR\)
4. \(C_P-C_V=\frac{R}{M^2}\)

Subtopic:  Specific Heat |
 67%
Level 2: 60%+
AIPMT - 2010
Hints

advertisementadvertisement

For hydrogen gas, the difference between molar specific heats is given by; \(C_P-C_V=a,\) and for oxygen gas, \(C_P-C_V=b.\) Here, \(C_P\)​ and \(C_V\)​ are molar specific heats expressed in \(\text{J mol}^{-1}\text{K}^{-1}.\) What is the relationship between \(a\) and \(b?\)
1. \(a=16b\)
2. \(b=16a\)
3. \(a=4b\)
4. \(a=b\)

Subtopic:  Specific Heat |
 65%
Level 2: 60%+
Hints

The specific heat of a gas:

1. has only two values \(Cp\) and \(Cv\).   
2. has a unique value at a given temperature.
3. can have any value between 0 and  ∞.
4. depends upon the mass of the gas.
 

Subtopic:  Specific Heat |
 58%
Level 3: 35%-60%
Hints

The value of CP-Cv=1.00 R for a gas in state A and CP-Cv=1.06 R in another state B. If PA and PB denote the pressure and TA & TB denote the temperatures in the two states, then:

1. \(P_A=P_B ; T_A>T_B\)
2. \(P_A>P_B ; T_A=T_B\)
3. \(P_A<P_B ; T_A>T_B\)
4. \(P_A=P_B ; T_A<T_B\)

Subtopic:  Specific Heat |
 52%
Level 3: 35%-60%
Hints

advertisementadvertisement

The amount of heat energy required to raise the temperature of \(1\) g of Helium at NTP, from \({T_1}\) K to \({T_2}\) K is:
1. \(\frac{3}{2}N_ak_B(T_2-T_1)\)
2. \(\frac{3}{4}N_ak_B(T_2-T_1)\)
3. \(\frac{3}{4}N_ak_B\frac{T_2}{T_1}\)
4. \(\frac{3}{8}N_ak_B(T_2-T_1)\)

Subtopic:  Specific Heat |
 53%
Level 3: 35%-60%
AIPMT - 2013
Hints
Links