A gas mixture consist of 2 moles of and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is:
1. 4RT
2. 15RT
3. 9RT
4. 11RT
One mole of an ideal monatomic gas undergoes a process described by the equation constant. The heat capacity of the gas during this process is:
1.
2.
3.
4.
A given sample of an ideal gas occupies a volume V at a pressure p and absolute temperature T. The mass of each molecule of the gas is m. Which of the following gives the density of the gas?
1. p/(kT)
2. pm / (kT)
3. p/ (kTV)
4. mkT
The molecules of a given mass of gas have rms velocity of 200 ms-1 at \(27^{\circ}\mathrm{C}\) and 1.0 x 105 Nm-2 pressure. When the temperature and pressure of the gas are increased to, respectively, \(127^{\circ}\mathrm{C}\) and 0.05 X 105 Nm-2, rms velocity of its molecules in ms-1 will become:
1. 400/√3
2. 100√2/3
3. 100/3
4.100√2
A monoatomic gas at a pressure p, having a volume V expands isothermally to a volume 2 V and then adiabatically to a volume 16 V. The final pressure of the gas is: (take γ=5/3)
1. 64ρ
2. 32ρ
3. ρ/64
4. 16ρ
The molar specific heats of an ideal gas at constant pressure and volume are denoted by CP and CV respectively. If γ=CP/CV and R is the universal gas constant, then CV is equal to
1. 1+γ/1-γ
2. R/(γ-1)
3. (γ-1)/R
4. γR
If and denote the specific heats (per unit mass) of an ideal gas of molecular weight M
1.
2.
3.
4.
At what temperature will the \(\text{rms}\) speed of oxygen molecules become just sufficient for escaping from the earth's atmosphere?
(Given: Mass of oxygen molecule \((m)= 2.76\times 10^{-26}~\text{kg}\), Boltzmann's constant \(k_B= 1.38\times10^{-23}~\text{J K}^{-1}\))
1. \(2.508\times 10^{4}~\text{K}\)
2. \(8.360\times 10^{4}~\text{K}\)
3. \(5.016\times 10^{4}~\text{K}\)
4. \(1.254\times 10^{4}~\text{K}\)
| 1. | \(\dfrac{400}{\sqrt{3}}\) | 2. | \(\dfrac{100\sqrt{2}}{3}\) |
| 3. | \(\dfrac{100}{3}\) | 4. | \(100\sqrt{2}\) |
| 1. | \(\dfrac{2}{3}\) | 2. | \(\dfrac{3}{4}\) |
| 3. | \(2\) | 4. | \(\dfrac{1}{2}\) |