A galvanometer of resistance \(50~\Omega\)  is connected to a battery of \(3\) V along with a resistance of \(2950~\Omega\) in series. A full-scale deflection of \(30\) divisions is obtained in the galvanometer. In order to reduce its deflection to \(20\) divisions, the resistance added in series should be:
1. \(1050~ \Omega\)
2. \(1550~ \Omega\)
3. \(2050~ \Omega\)
4. \(1500~ \Omega\)

Subtopic:  Moving Coil Galvanometer | Conversion to Ammeter & Voltmeter |
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

An arrangement of three parallel straight wires placed perpendicular to the plane of paper carrying the same current in the same direction is shown in the figure. The magnitude of force per unit length on the middle wire \(B\) is given by:
    

1. \(\frac{\mu_0i^2}{2\pi d}\) 2. \(\frac{2\mu_0i^2}{\pi d}\)
3. \(\frac{\sqrt{2}\mu_0i^2}{\pi d}\) 4. \(\frac{\mu_0i^2}{\sqrt{2}\pi d}\)
Subtopic:  Force between Current Carrying Wires |
 62%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Resistance of a Galvanometer coil is \(8~\Omega\) and \(2~\Omega\) shunt resistance is connected with it. If main current is \(1\) A then the current flow through \(2~\Omega\) resistance will be:
1. \(0.2\) A
2. \(0.8\) A
3. \(0.1\) A
4. \(0.4\) A

Subtopic:  Moving Coil Galvanometer |
 73%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A straight wire of mass \(200~\text{g}\) and length \(1.5~\text{m}\) carries a current of \(2~\text{A}\). It is suspended in mid-air by a uniform horizontal magnetic field \(B\) (shown in the figure). What is the magnitude of the magnetic field?

       

1. \(0.65~\text{T}\)
2. \(0.77~\text{T}\)
3. \(0.44~\text{T}\)
4. \(0.20~\text{T}\)

Subtopic:  Lorentz Force |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

An element \(\Delta l=\Delta x \hat{i}\) is placed at the origin and carries a large current of \(I=10\) A (as shown in the figure). What is the magnetic field on the y-axis at a distance of \(0.5\) m?(\(\Delta x=1~\mathrm{cm}\))
       

 1. \(6\times 10^{-8}~\mathrm{T}\) 2. \(4\times 10^{-8}~\mathrm{T}\)
3. \(5\times 10^{-8}~\mathrm{T}\) 4. \(5.4\times 10^{-8}~\mathrm{T}\)

Subtopic:  Biot-Savart Law |
 80%
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A wire carrying a current \(I_o\) oriented along the vector \(\big(3\widehat{i}+4\widehat{j}\big)\) experiences a force per unit length of \(\big(4F\widehat{i}-3F\widehat{j}-F\widehat{k}\big)\). The magnetic field \(\overrightarrow{B}\) equals:

1. \(\frac{F}{I_o}\big(\widehat{i}+\widehat{j}\big)\)

2. \(\frac{5F}{I_o}\big(\widehat{i}+\widehat{j}+\widehat{k}\big)\)

3. \(\frac{F}{I_o}\big(\widehat{i}+\widehat{j}+\widehat{k}\big)\)

4. \(\frac{5F}{I_o}\widehat{k}\)

Subtopic:  Lorentz Force |
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

The net resistance of a voltmeter should be large to ensure that:
 
1. it does not get overheated.
2. it does not draw excessive current.
3. it can measure large potential differences.
4. it does not appreciably change the potential difference to be measured.

Subtopic:  Conversion to Ammeter & Voltmeter |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A circular loop of area \(1\) cm2, carrying a current of \(10\) A, is placed in a magnetic field of \(0.1\) T perpendicular to the plane of the loop. The torque on the loop due to the magnetic field is:
1. zero
2. \(10^{-4}\) N-m
3. \(10^{-2}\) N-m
4. \(1\) N-m

Subtopic:  Current Carrying Loop: Force & Torque |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A charged particle moves in a gravity-free space without change in velocity. Which of the following is/are possible?

a. \(E=0,~B=0\)
b. \(E=0,~B\neq0\)
c. \(E\neq0,~B=0\)
d. \(E\neq0,~B\neq0\)

Choose the correct option:

1. (a), (b), (d)
2. (b), (c), (a)
3. (c), (d), (b)
4. (a), (c), (d)
Subtopic:  Lorentz Force |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A proton beam is going from north to south and an electron beam is going from south to north. Neglecting the earth's magnetic field, the electron beam will be deflected:

1. towards the proton beam
2. away from the proton beam
3. upwards
4. downwards
Subtopic:  Force between Current Carrying Wires |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh