\({A, B}~\text{and}~{C}\) are voltmeters of resistance \(R,\) \(1.5R\) and \(3R\) respectively as shown in the figure above. When some potential difference is applied between \({X}\) and \({Y},\) the voltmeter readings are \({V}_{A},\) \({V}_{B}\) and \({V}_{C}\) respectively. Then:
1. | \({V}_{A} ={V}_{B}={V}_{C}\) | 2. | \({V}_{A} \neq{V}_{B}={V}_{C}\) |
3. | \({V}_{A} ={V}_{B}\neq{V}_{C}\) | 4. | \({V}_{A} \ne{V}_{B}\ne{V}_{C}\) |
1. | current density | 2. | current |
3. | drift velocity | 4. | electric field |
The figure given below shows a circuit when resistances in the two arms of the meter bridge are \(5~\Omega\) and \(R\), respectively. When the resistance \(R\) is shunted with equal resistance, the new balance point is at \(1.6l_1\). The resistance \(R\) is:
1. | \(10~\Omega\) | 2. | \(15~\Omega\) |
3. | \(20~\Omega\) | 4. | \(25~\Omega\) |
In the circuit shown cells, \(A\) and \(B\) have negligible resistance. For \(V_A =12 ~\text{V},\) \(R_1 = 500 ~\Omega ,\) and \(R = 100 ~\Omega ,\) the galvanometer \((\text{G}) \) shows no deflection. The value of \(V_B\) is:
1. \(4~\text V\)
2. \(2~\text V\)
3. \(12~\text V\)
4. \(6~\text V\)
If power dissipated in the \(9~\Omega\) resistor in the circuit shown is \(36\) W, the potential difference across the \(2~\Omega\) resistor will be:
1. \(8\) V
2. \(10\) V
3. \(2\) V
4. \(4\) V
A current of \(2~\text{A}\) flows through a \(2~\Omega\) resistor when connected across a battery. The same battery supplies a current of \(0.5~\text{A}\) when connected across a \(9~\Omega\) resistor. The internal resistance of the battery is:
1. | \(\dfrac{1}{3}~\Omega\) | 2. | \(\dfrac{1}{4}~\Omega\) |
3. | \(1~\Omega\) | 4. | \(0.5~\Omega\) |
1. | is zero. |
2. | depends upon the choice of the two materials of the thermocouple. |
3. | is negative. |
4. | is positive. |
A wire of resistance \(12~ \Omega \text{m}^{-1}\) is bent to form a complete circle of radius \(10~\text{cm}\). The resistance between its two diametrically opposite points, \(A\) and \(B\) as shown in the figure, is:
1. | \(0.6\pi~\Omega\) | 2. | \(3\pi ~\Omega\) |
3. | \(61 \pi~ \Omega\) | 4. | \(6\pi~\Omega\) |