If in a photoelectric experiment, the wavelength of incident radiation is reduced from \(6000~\mathring{A}\) to \(4000~\mathring{A}\), then:
1. The stopping potential will decrease.
2. The stopping potential will increase.
3. The kinetic energy of emitted electrons will decrease.
4. The value of the work function will decrease.

Subtopic:  Photoelectric Effect: Experiment |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The maximum kinetic energy of photoelectrons emitted from a surface when photons of energy 6 eV fall on it is 4 eV. The stopping potential in volts is

(1) 2                     

(2) 4

(3) 6                     

(4) 10

Subtopic:  Electron Emission |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A beam of light of wavelength \(\lambda\) and with illumination \(L\) falls on a clean surface of sodium. If \(N\) photoelectrons are emitted each with kinetic energy \(E\), then:
1. \(N \propto L \) and \(E \propto L \)
2. \(N \propto L \) and \(E \propto \frac{1}{\lambda}\)
3. \(N \propto \lambda\) and \(E \propto L \)
4. \(N \propto \frac{1}{\lambda}\) and \(E \propto \frac{1}{L}\)

Subtopic:  Electron Emission |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Light of frequency v is incident on a substance of threshold frequency v0v0<v. The energy of the emitted photo-electron will be 
(a) hv-v0                  (b) h/v
(c) hev-v0                (d) h/v0

Subtopic:  Electron Emission | Einstein's Photoelectric Equation |
 90%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

4 eV is the energy of the incident photon and the work function in 2eV. What is the stopping potential ?

(1) 2V                   

(2) 4V

(3) 6V                   

(4) 22 V 

Subtopic:  Photoelectric Effect: Experiment |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When radiation of wavelength λ is incident on a metallic surface, the stopping potential is 4.8 volts. If the same surface is illuminated with radiation of double the wavelength, then the stopping potential becomes 1.6 volts. Then the threshold wavelength for the surface is

(a) 2λ                 (b) 4λ
(c) 6λ                 (d) 8λ

Subtopic:  Einstein's Photoelectric Equation |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If the energy of the photon is increased by a factor of 4, then its momentum 

(1) Does not change

(2) Decreases by a factor of 4

(3) Increases by a factor of 4

(4) Decreases by a factor of 2

Subtopic:  De-broglie Wavelength |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In a photoemissive cell with executing wavelength λ, the fastest electron has speed v. If the exciting wavelength is changed to 3λ/4, the speed of the fastest emitted electron will be 
(a) v3/41/2                              (b) v4/31/2
(c) Less than v4/31/2               (d) Greater than v4/31/2

Subtopic:  Photoelectric Effect: Experiment |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The figure shows the variation of photocurrent with anode potential for a photo-sensitive surface for three different radiations. Let Ia,Ib and Ic be the intensities and fa,fb and fc be the frequencies for the curves a, b and c respectively. Then-

1. fa=fb  and IaIb 
2. fa=fc and Ia=Ic
3. fa=fb and Ia=Ic
4. fa=fb  and Ia=Ib

Subtopic:  Electron Emission |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The stopping potential as a function of the frequency of the incident radiation is plotted for two different photoelectric surfaces \(A\) and \(B\). The graphs demonstrate that \(A\)'s work function is:

           

1. Greater than that of \(B\). 2. Smaller than that of \(B\).
3. Equal to that of \(B\). 4. No inference can be drawn about their work functions from the given graphs.
Subtopic:  Photoelectric Effect: Experiment |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch