A particle with charge \(q\), moving with a momentum \(p\), enters a uniform magnetic field normally. The magnetic field has magnitude \(B\) and is confined to a region of width \(d\), where \(d< \frac{p}{Bq}.\) The particle is deflected by an angle \(\theta\) in crossing the field, then:
       
| 1. | \(\sin \theta=\frac{Bqd}{p}\) | 2. | \(\sin \theta=\frac{p}{Bqd}\) | 
| 3. | \(\sin \theta=\frac{Bp}{qd}\) | 4. | \(\sin \theta=\frac{pd}{Bq}\) | 
The same current i = 2A is flowing in a wireframe as shown in the figure. The frame is a combination of two equilateral triangles ACD and CDE of side 1m. It is placed in uniform magnetic field B = 4T acting perpendicular to the plane of the frame. The magnitude of the magnetic force acting on the frame is:
                        
1. 24 N                                        
2. Zero
3. 16 N                                         
4. 8 N
In the given figure net magnetic field at O will be i
   
1.                                  
2. 
3.                                  
4. 
In the following figure a wire bent in the form of a regular polygon of n sides is inscribed in a circle of radius a. Net magnetic field at centre will be \(\left(\theta = \frac{\pi}{n}\right)\)
                                
1. \(\frac{\left(\mu\right)_{o} i}{2 πa} tan \frac{\pi}{n}\)                                               
2. \(\frac{\left(\mu\right)_{0} n i}{2 πa} tan \frac{\pi}{n}\)
3.\(\frac{2}{\pi} \frac{n i}{a} \left(\mu\right)_{0} tan \frac{\pi}{n}\)                                           
4. \(\frac{n i}{2 a} \left(\mu\right)_{0} tan \frac{\pi}{n}\)
The unit vectors \(\hat{i} , \hat{j} ~\text{and} ~ \hat{k}\) are as shown below. What will be the magnetic field at \(O\) in the following figure?
                                           
1. \(\frac{\mu_{0}}{4 \pi} \frac{i}{a} 2 - \frac{\pi}{2} \hat{j}\)             
2. \(\frac{\mu_{0}}{4 \pi} \frac{i}{a}2 + \frac{\pi}{2} \hat{j}\)
3. \(\frac{\mu_{0}}{4 \pi} \frac{i}{a}2 + \frac{\pi}{2} \hat{i}\)             
4. \(\frac{\mu_{0}}{4 \pi} \frac{i}{a} 2 + \frac{\pi}{2} \hat{k}\) 
 
A particle of charge q and mass m moves in a circular orbit of radius r with angular speed ω. The ratio of the magnitude of its magnetic moment to that of its angular momentum depends on
1. ω and q
2. ω, q and m
3. q and m
4. ω and m
A current \(I\) is carried by an elastic circular wire of length \(L\). It is placed in a uniform magnetic field \(B\) (out of paper) with its plane perpendicular to \(B'\text{s}\) direction. What will happen to the wire?
       
| 1. | No force | 2. | A stretching force | 
| 3. | A compressive force | 4. | A torque | 
Wires 1 and 2 carrying currents and respectively are inclined at an angle to each other. What is the force on a small element dl of wire 2 at a distance of r from wire 1 (as shown in figure) due to the magnetic field of wire 1
                                       
1. 2.
3. 4.
A conducting loop carrying a current \(I\) is placed in a uniform magnetic field pointing into the plane of the paper as shown. The loop will tend to
                                    
 
| 1. | Contract | 
| 2. | Expand | 
| 3. | Move towards \(+ve~ X -axis \) | 
| 4. | Move towards \(-ve~ X -axis \) | 
A metallic block carrying current I is subjected to a uniform magnetic induction as shown in the figure. The moving charges experience a force given by ........... which results in the lowering of the potential of the face ........ Assume the speed of the carriers to be v
                   
1. \(eVB\hat{k}, ABCD\)
2. \(eVB\hat{k}, EFGH\)
3. \(-eVB\hat{k}, ABCD\)
4. \(-eVB\hat{k}, EFGH\)