Point charges +4q, –q and +4q are kept on the x-axis at points x = 0, x = a and x = 2a respectively, then:

(1) only -q is in stable equilibrium.

(2) none of the charges are in equilibrium.

(3) all the charges are in unstable equilibrium.

(4) all the charges are in stable equilibrium.

Subtopic:  Coulomb's Law |
Level 3: 35%-60%
PMT - 1992
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Two-point charges \(+8q\)  and \(-2q\) are located at \(x=0\)  and \( x = L\) respectively. The location of a point on the \(x-axis\)  at which the net electric field due to these two point charges is zero is 
1. \(8~\text{L}\) 2. \(4~\text{L}\)
3. \(2~\text{L}\) 4. \(\frac{\text{L}}{4}\)
Subtopic:  Electric Field |
 72%
Level 2: 60%+
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Three infinitely long charge sheets are placed as shown in the figure. The electric field at point P is 

(1) 2σεok^

(2) 2σεok^

(3) 4σεok^

(4) -4σεok^

Subtopic:  Electric Field |
 70%
Level 2: 60%+
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

Two infinitely long parallel conducting plates having surface charge densities \(+\sigma\) and \(-\sigma\) respectively, are separated by a small distance. The medium between the plates is a vacuum. If \(\varepsilon_0\) is the dielectric permittivity of vacuum, then the electric field in the region between the plates is:
1. \(0~\text{V/m}\)
2. \(\dfrac{\sigma}{2\varepsilon_0}~\text{V/m}\)
3. \(\dfrac{\sigma}{\varepsilon_0}~\text{V/m}\)
4. \(\dfrac{2\sigma}{\varepsilon_0}~\text{V/m}\)
Subtopic:  Electric Field |
 60%
Level 2: 60%+
AIIMS - 2005
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Electric field at a point varies as r0 for

(1) An electric dipole

(2) A point charge

(3) A plane infinite sheet of charge

(4) A line charge of infinite length

Subtopic:  Electric Field |
 70%
Level 2: 60%+
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Eight dipoles of charges of magnitude \((e)\) are placed inside a cube. The total electric flux coming out of the cube will be: 
1. \(\frac{8e}{\epsilon _{0}}\)
2. \(\frac{16e}{\epsilon _{0}}\)
3. \(\frac{e}{\epsilon _{0}}\)
4. zero

Subtopic:  Electric Dipole |
 76%
Level 2: 60%+
PMT - 1998
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A charge \(q\) is placed at the centre of the open end of the cylindrical vessel. The flux of the electric field through the surface of the vessel is:
1. \(0\)
2. \(\dfrac{q}{\varepsilon_0}\)
3. \(\dfrac{q}{2\varepsilon_0}\)
4. \(\dfrac{2q}{\varepsilon_0}\)

Subtopic:  Gauss's Law |
 50%
Level 3: 35%-60%
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

\(q_1, q_2,q_3~\text{and}~q_4\) are point charges located at points as shown in the figure and \(S\) is a spherical Gaussian surface of radius \(R\). Which of the following is true according to the Gauss’s law?


1. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3\right) \cdot d \vec{A}=\frac{q_1+q_2+q_3}{2 \varepsilon_0}\)
2. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3+\vec{E}_4\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3\right)}{\varepsilon_0}\)
3. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3+q_4\right)}{\varepsilon_0}\)
4. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3+\vec{E}_4\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3+q_4\right)}{\varepsilon_0}\)

Subtopic:  Gauss's Law |
 77%
Level 2: 60%+
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Consider the charge configuration and spherical Gaussian surface as shown in the figure. While calculating the flux of the electric field over the spherical surface, the electric field will be due to: 

(1) q2 only

(2) Only the positive charges

(3) All the charges

(4) +q1 and – q1 only

Subtopic:  Gauss's Law |
 61%
Level 2: 60%+
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The electric intensity due to an infinite cylinder of radius R and having charge q per unit length at a distance r(r > R) from its axis is 

(1) Directly proportional to r2

(2) Directly proportional to r3

(3) Inversely proportional to r

(4) Inversely proportional to r2

Subtopic:  Electric Field |
 66%
Level 2: 60%+
PMT - 1993
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital