| Statement I: | The value of wave function, \(\Psi\) depends upon the coordinates of the electron in the atom. |
| Statement II: | The probability of finding an electron at a point within an atom is proportional to the orbital wave function. |
| 1. | Statement I is True but Statement II is False. |
| 2. | Statement I is False but Statement II is True. |
| 3. | Both Statement I and Statement II are True. |
| 4. | Both Statement I and Statement II are False. |
| 1. | \({{1.196\times 10^{8}}\over{\lambda}}\) | 2. | \({{2.859\times 10^{5}}\over{\lambda}}\) |
| 3. | \({{2.859\times 10^{16}}\over{\lambda}}\) | 4. | \({{1.196\times 10^{16}}\over{\lambda}}\) |
| (I) | \( |\Psi|^2 \) is known as a probability density. |
| (II) | The Schrödinger equation can be easily solved for a multi-electron atom. |
| (III) | An atomic orbital is the wave function \( \Psi\) for an electron in an atom. |
| List-I (quantum number) |
List-II (Orbital) |
||
| (A) | n = 2, \(\ell\) = 1 | (I) | 2s |
| (B) | n = 3, \(\ell\) = 2 | (II) | 3s |
| (C) | n = 3, \(\ell\) = 0 | (III) | 2p |
| (D) | n = 2, \(\ell\) = 0 | (IV) | 3d |
| (A) | (B) | (C) | (D) | |
| 1. | (III) | (IV) | (I) | (II) |
| 2. | (IV) | (III) | (I) | (II) |
| 3. | (IV) | (III) | (II) | (I) |
| 4. | (III) | (IV) | (II) | (I) |