| Assertion (A): | Half-filled and fully-filled degenerate orbitals are more stable. |
| Reason (R): | Extra stability is due to the symmetrical distribution of electrons and high exchange energy. |
| 1. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
| 2. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
| 3. | (A) is True but (R) is False. |
| 4. | (A) is False but (R) is True. |
| Assertion (A): | Helium and berylium having the similar outer electronic configuration of type \(ns^2\). |
| Reason (R): | Both are chemically inert. |
| 1. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
| 2. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
| 3. | (A) is True but (R) is False. |
| 4. | Both (A) and (R) are False. |
| (i). | n (principal quantum number) can have values 1, 2, 3, 4, ....... |
| (ii). | The number of orbitals for a given value of l is (2l+1). |
| (iii). | The value of spin quantum numbers is always \(\pm\frac12\). |
| (iv). | For l=5, the total number of orbitals is 9. |
| List-I (quantum number) |
List-II (Orbital) |
||
| (A) | n = 2, \(\ell\) = 1 | (I) | 2s |
| (B) | n = 3, \(\ell\) = 2 | (II) | 3s |
| (C) | n = 3, \(\ell\) = 0 | (III) | 2p |
| (D) | n = 2, \(\ell\) = 0 | (IV) | 3d |
| (A) | (B) | (C) | (D) | |
| 1. | (III) | (IV) | (I) | (II) |
| 2. | (IV) | (III) | (I) | (II) |
| 3. | (IV) | (III) | (II) | (I) |
| 4. | (III) | (IV) | (II) | (I) |
| (I) | \( |\Psi|^2 \) is known as a probability density. |
| (II) | The Schrödinger equation can be easily solved for a multi-electron atom. |
| (III) | An atomic orbital is the wave function \( \Psi\) for an electron in an atom. |