The densities of graphite and diamond at 298 K are 2.25 and 3.31 g cm–3, respectively. If the standard free energy difference (∆Gº) is equal to 1895 J mol–1, the pressure at which graphite will be transformed into diamond at 298 K is:

1. 11.08×108 Pa

2. 9.92×107 Pa

3. 9.92×106 Pa

4. 11.08×105 Pa

Subtopic:  Gibbs Energy Change |
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

What is the entropy change (in JK–1 mol–1) when one mole of ice is converted into water at 0 ºC? (The enthalpy change for the conversion of ice to liquid water is 6.0 KJ mol–1 at 0 ºC)

1. 20.13 2. 2.013
3. 2.198 4. 21.98
Subtopic:  Spontaneity & Entropy |
 73%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The formation of a solution from two components can be considered as:

(i) Pure solvent → separated solvent molecules, ∆H1
(ii) Pure solute → separated solute molecules, ∆H2
(iii) Separated solvent and solute molecules → solution, ∆H3

The solution so formed will be ideal if:
1. ∆HSoln = ∆H1 + ∆H2 + ∆H3

2. ∆HSoln = ∆H1 + ∆H2 – ∆H3

3. ∆HSoln = ∆H1 – ∆H2 – ∆H3

4. ∆HSoln = ∆H3 – ∆H1 – ∆H2

Subtopic:  Thermochemistry |
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The molar heat capacity of water at constant pressure, C, is 75 JK–1 mol–1. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increase in temperature of the water is:

1. 1.2 K 2. 2.4 K
3. 4.8 K 4. 6.6 K
Subtopic:  First Law of Thermodynamics |
 76%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

12N2 (g) + 12O2 (g)  NO(g) ;
rH° = 90 kJ mol-1
NO(g) + 12O2(g)  NO2(g); 
rH° = -74 kJ mol-1

The thermodynamic stability of NO(g) based on the above data is:

1. Less than NO2(g) 

2. More than NO2(g)

3. Equal to NO2(g)

4. Insufficient data

Subtopic:  Enthalpy & Internal energy |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The entropy change in the surroundings when 1.00 mol of H2O(l) is formed under standard conditions is-

fHθ = –286 kJ mol–1 

1. 952.5 J mol-1

2. 979.7 J mol-1

3. 949.7 J mol-1

4. 959.7 J mol-1

Subtopic:  Spontaneity & Entropy |
 50%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

For the graph given below, it can be concluded that work done during the process shown will be-

1. Zero 2. Negative
3. Positive 4. Cannot be determined
Subtopic:  First Law of Thermodynamics |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Consider the following graph.

  

The work done shown by the above-mentioned graph is-

1. Positive 2. Negative
3. Zero 4. Cannot be determined
Subtopic:  First Law of Thermodynamics |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Consider the following diagram for a reaction AC


      

The nature of the reaction is-

1. Exothermic

2. Endothermic

3. Reaction at equilibrium

4. None of the above

Subtopic:  Enthalpy & Internal energy |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Consider the following diagram for a reaction AC:

The nature of the reaction is-

1. Exothermic 2. Endothermic
3. Reaction at equilibrium 4. None of the above
Subtopic:  Enthalpy & Internal energy |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch