The rate constant for a first order reaction is 60 s–1. How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?

1. 2.3 × 10-2 s
2. 4.6 × 10-2 s
3. 3.1 × 10-3 s
4. 1.4 × 10-2 s

Subtopic:  First Order Reaction Kinetics |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A first-order reaction takes 40 min for 30 % decomposition. The half life of the reaction will be: 

1. 88.8 min 2. 94.3 min
3. 67.2 min 4. 77.7 min

Subtopic:  First Order Reaction Kinetics |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The rate constant for the decomposition of hydrocarbons is 2.418 × 10–5 s–1 at 546 K. If the energy of activation is 179.9 kJ/mol, the value of the pre-exponential factor will be:

1. 4.0 × 1012 s-1
2. 7.8 × 10-13 s-1
3. 3.8 × 10-12 s-1
4. 4.7 × 1012 s-1

Subtopic:  Arrhenius Equation |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

For a reaction A  Product, with k = 2.0 × 10–2 s–1, if the initial concentration of A is 1.0 mol L-1, the concentration of A after 100 seconds would be :

1. 0.23 mol L-1 2. 0.18 mol L-1
3. 0.11 mol L-1 4. 0.13 mol L-1
Subtopic:  First Order Reaction Kinetics |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The decomposition of sucrose follows the first-order rate law. For this decomposition, t1/2 is 3.00 hours. The fraction of a sample of sucrose that remains after 8 hours would be:

1. 0.13 2. 0.42
3. 0.16 4. 0.25
Subtopic:  First Order Reaction Kinetics |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The decomposition of hydrocarbons follows the equation: k = (4.5 × 1011s–1) e-28000K/T

The activation energy (Ea) for the reaction would be:

1. 232.79 kJ mol-1 2. 245.86 kJ mol-1
3. 126.12 kJ mol-1 4. 242.51 kJ mol-1
Subtopic:  Arrhenius Equation |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

The rate constant for the first-order decomposition of H2O2 is given by the equation: \(log \ k \ = \ 14.34 \ - \ 1.25 \ \times \ 10^{4}\frac{K}{T}\)The value of Ea for the reaction would be:

1. 249.34 kJ mol-1

2. 242.64 J mol-1

3. -275.68 kJ mol-1

4. 239.34 kJ mol-1

Subtopic:  Arrhenius Equation |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The decomposition of A into the product has a value of k as 4.5 × 103 s–1 at 10°C and energy of activation of 60 kJ mol–1. The temperature at which the rate constant becomes 1.5 × 10s–1   would be -

124 K
2. 24 °C
3. 31 °C
4. 38 °C

Subtopic:  Arrhenius Equation |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The time required for 10% completion of a first order reaction at 298K is equal to that required for its 25% completion at 308K. If the value of A is 4 × 1010 s–1. What will be the activation energy for the reaction ?

1. 76.64 kJ mol-1

2. 72.27 kJ mol-1

3. 68.95 kJ mol-1

4. 56.24 kJ mol-1 

 

Subtopic:  Arrhenius Equation |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. The energy of activation of the reaction would be -

1. 65.93 kJ mol-1

2. 52.85 kJ mol-1

3. 55.46 kJ mol-1

4. 60.93 kJ mol-1

Subtopic:  Arrhenius Equation |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh