A nuclear decay is expressed as:
\(_{6}^{11}\mathrm{C}\rightarrow _{5}^{11}\mathrm{B}+\beta^{+}+\mathrm{X}\)
Then the unknown particle \(X\) is:
1. neutron 
2. antineutrino
3. proton 
4. neutrino

Subtopic:  Types of Decay |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When a deuterium is bombarded on \({}_{8}^{16}\mathrm{O}\) nucleus, an \(\alpha\text-\)particle is emitted, then the product nucleus is:
1. \({}_{7}^{13}\mathrm{N}\) 2. \({}_{5}^{10}\mathrm{B}\)
3. \({}_{4}^{9}\mathrm{Be}\) 4. \({}_{7}^{14}\mathrm{N}\)
Subtopic:  Types of Decay |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A nuclear reaction given by \({ }_{Z}^{A} \mathrm{~X} \rightarrow{ }_{Z+1}^{A} \mathrm{Y}+e^{-}+\bar{v}\) represents:

1. fusion 2. fission
3. \(\beta^{-} \text-\)decay 4. \(\gamma \)-decay
Subtopic:  Types of Decay |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The mass of \({}_{7}^{15}\mathrm{N}\) is \(15.00011\) amu, mass of \({}_{8}^{16}\mathrm{O}\) is \(15.99492\) amu and \(m_p = 1.00783\) amu. Determine the binding energy of the last proton of \({ }_{8}^{16}\mathrm{O}\).
1. \(2.13\) MeV
2. \(0.13\) MeV 
3. \(10\) MeV 
4. \(12.13\) MeV

Subtopic:  Nuclear Binding Energy |
 51%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The rate of disintegration of a fixed quantity of a radioactive substance can be increased by:

1. increasing the temperature.

2. increasing the pressure.

3. chemical reaction.

4. it is not possible.

Subtopic:  Radioactivity (OLD NCERT) |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The energy released by the fission of one  uranium atom is 200 MeV. The number of fission per second required to produce 3.2 W of power is (Take, 1 eV = 1.6×10-19 J) [WB JEE 2010]

1. 107 

2. 1010 

3. 1015

4. 1011

Subtopic:  Nuclear Binding Energy |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The power obtained in a reactor using \(\mathrm{U}^{235}\) disintegration is \(1000\) kW. The mass decay of \(\mathrm{U}^{235}\) per hour is:
1. \(1\) microgram
2. \(10\) microgram
3. \(20\) microgram
4. \(40\) microgram

Subtopic:  Nuclear Energy |
From NCERT
PMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Light energy emitted by stars is due to

1. Breaking of nuclei 

2.Joining of nuclei       

3. Burning of nuclei

4. Reflection of solar light

Subtopic:  Mass-Energy Equivalent |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The constituents of atomic nuclei are believed to be [1991]

1. neutrons and protons

2. protons only

3. electrons and protons

4. electrons, protons and neutrons

Subtopic:  Mass-Energy Equivalent |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The half-life of radium is about 1600 yr. Of 100 g of radium existing now, 25 g will remain unchanged after [2004]

1. 4800 yr

2. 6400 yr 

3. 2400 yr

4. 3200 yr

Subtopic:  Radioactivity (OLD NCERT) |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch