Two non-mixing liquids of densities and \(n 𝜌 (n>1)\) are put in a container. The height of each liquid is \(h.\) A solid cylinder floats with its axis vertical and length \(pL (𝑝 < 1)\) in the denser liquid. The density of the cylinder is \(d.\) The density \(d\) is equal to:
1. \({[2+(n+1)p}] 𝜌\)
2. \([{2+(n-1)p}] 𝜌\)
3. \([{1+(n-1)p}] 𝜌\)
4. \([{1+(n+1)p}] 𝜌\)
Two bodies are in equilibrium when suspended in water from the arms of a balance. The mass of one body is \(36~\text g\) and its density is \(9~\text{g/cm}^3.\) If the mass of the other is \(48~\text g,\) its density in \((\text{g/cm}^3)\) will be:
1. \(\frac{4}{3}\)
2. \(\frac{3}{2}\)
3. \(3\)
4. \(5\)