A frictionless wire \(AB\) is fixed on a sphere of radius \(R\). A very small spherical ball slips on this wire. The time taken by this ball to slip from \(A\) to \(B\) is:
1. \(\frac{2 \sqrt{g R}}{g \cos \theta}\)
2. \(2 \sqrt{g R} . \frac{\cos \theta}{g}\)
3. \(2 \sqrt{\frac{R}{g}}\)
4. \(\frac{g R}{\sqrt{g\cos \theta}}\)
A body is slipping from an inclined plane of height \(h\) and length \(l\). If the angle of inclination is \(\theta\), the time taken by the body to come from the top to the bottom of this inclined plane is:
1. \(\sqrt{\frac{2 h}{g}}\)
2. \(\sqrt{\frac{2 l}{g}}\)
3. \(\frac{1}{\sin \theta} \sqrt{\frac{2 h}{g}}\)
4. \(\sin \theta \sqrt{\frac{2 h}{g}}\)
A body sliding on a smooth inclined plane requires \(4\) seconds to reach the bottom starting from the rest at the top. How much time does it take to cover one-fourth distance starting from the rest at the top?
1. | \(1~\text{s}\) | 2. | \(2~\text{s}\) |
3. | \(4~\text{s}\) | 4. | \(16~\text{s}\) |