An electric dipole is in unstable equilibrium in the uniform electric field. The angle between its dipole moment and the electric field is
1. 90
2. 120
3. 0
4. 180
An electric dipole of dipole moment p is placed in an electric field of intensity E such that angle between electric field and dipole moment is . Assuming that the potential energy of the dipole is zero when , the potential energy of the dipole will be
1. -pE cos
2. pE(1-cos)
3. pE(cos-1)
4. -2pE(cos-1)
Eight dipoles of charges of magnitude \((e)\) are placed inside a cube. The total electric flux coming out of the cube will be:
1. \(\frac{8e}{\epsilon _{0}}\)
2. \(\frac{16e}{\epsilon _{0}}\)
3. \(\frac{e}{\epsilon _{0}}\)
4. zero
An electric dipole is situated in an electric field of uniform intensity E whose dipole moment is p and moment of inertia is I. If the dipole is displaced slightly from the equilibrium position, then the angular frequency of its oscillations is?
1.
2.
3.
4.
Two-point charges \(+q\) and \(–q\) are held fixed at \((–d, 0)\) and \((d, 0)\) respectively of a \((x, y)\) coordinate system. Then:
1. | \(E\) at all points on the \(y\text-\)axis is along \(\hat i\) |
2. | The electric field \(\vec E \) at all points on the \(x\text-\)axis has the same direction |
3. | The dipole moment is \(2qd\) directed along \(\hat i\) |
4. | The work has to be done to bring a test charge from infinity to the origin |
Three-point charges \(+q\), \(-2q\) and \(+q\) are placed at points \((x=0,y=a,z=0)\), \((x=0, y=0,z=0)\) and \((x=a, y=0, z=0)\), respectively. The magnitude and direction of the electric dipole moment vector of this charge assembly are:
1. | \(\sqrt{2}qa\) along \(+y\) direction |
2. | \(\sqrt{2}qa\) along the line joining points \((x=0,y=0,z=0)\) and \((x=a,y=a,z=0)\) |
3. | \(qa\) along the line joining points \((x=0,y=0,z=0)\) and \((x=a,y=a,z=0)\) |
4. | \(\sqrt{2}qa\) along \(+x\) direction |
Two short dipoles are placed at a certain distance exert a force 'F' on each other. If the distance between them is doubled then the force will become
1. F
2.
3. 4F
4.
The net dipole moment of the system is of the magnitude:
1. \(q\times 2a\)
2. \(2q \times 2a\)
3. \(q\times a\)
4. \(2\times (2q\times 2a)\)
A point charge +q is kept at the center of the curvature of thin semicircular wire of length l as shown. The wire has uniformly distributed charge -q on it. The dipole moment of the system is
1.
2.
3.
4. Zero
An electric dipole is placed at the centre of a sphere. Which of the following statements is correct?
1. | The electric flux through the sphere is zero. |
2. | The electric field is zero at every point on the sphere. |
3. | The electric field is zero at every point inside the sphere. |
4. | The electric field is uniform inside the sphere. |