In planetary motion, the areal velocity of the position vector of a planet depends on the angular velocity \((\omega)\) and the distance of the planet from the sun \((r)\). The correct relation for areal velocity is:
1. \(\frac{dA}{dt}\propto \omega r\)
2. \(\frac{dA}{dt}\propto \omega^2 r\)
3. \(\frac{dA}{dt}\propto \omega r^2\)
4. \(\frac{dA}{dt}\propto \sqrt{\omega r}\)

Subtopic:  Kepler's Laws |
 57%
Level 3: 35%-60%
Hints
Links

If \(A\) is the areal velocity of a planet of mass \(M,\) then its angular momentum is:

1. \(\frac{M}{A}\) 2. \(2MA\)
3. \(A^2M\) 4. \(AM^2\)
Subtopic:  Kepler's Laws |
 75%
Level 2: 60%+
Hints
Links

Kepler's second law regarding constancy of the areal velocity of a planet is a consequence of the law of conservation of:

1. Energy

2. Linear momentum

3. Angular momentum

4. Mass

Subtopic:  Kepler's Laws |
 83%
Level 1: 80%+
Hints

advertisementadvertisement

The distance of neptune and saturn from sun are nearly 1013 and 1012 meters respectively. Assuming that they move in circular orbits, their periodic times will be in the ratio

1. 10                                               

2. 100

3. 1010                                             

4. 1/10 

Subtopic:  Kepler's Laws |
 81%
Level 1: 80%+
Hints

The period of a satellite in a circular orbit of radius R is T, the period of another satellite in a circular orbit of radius 4R is

1. 4T                                                   

2. T4

3. 8T                                                   

4. T8

Subtopic:  Kepler's Laws |
 80%
Level 1: 80%+
Hints

A planet moves around the sun. At a given point P, it is closest from the sun at a distance d1 and has a speed v1. At another point Q,  when  it is farthest from the sun at a distance d2, its speed will be

1. d12v1d22                                             

2. d2v1d1

3. d1v1d2                                               

4. d22v1d12

Subtopic:  Kepler's Laws |
 76%
Level 2: 60%+
Hints

advertisementadvertisement

A satellite whose mass is \(m\), is revolving in a circular orbit of radius \(r\), around the earth of mass \(M\). Time of revolution of the satellite is:
1. \(T \propto \frac{r^5}{GM}\)
2. \(T \propto \sqrt{\frac{r^3}{GM}}\)
3. \(T \propto \sqrt{\frac{r}{\frac{GM^2}{3}}}\)
4. \(T \propto \sqrt{\frac{r^3}{\frac{GM^2}{4}}}\)

Subtopic:  Kepler's Laws |
 83%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Given the radius of Earth ‘R’ and length of a day ‘T’, the height of a geostationary satellite is:

[G–Gravitational Constant, M–Mass of Earth] 

1.  4π2GMT213                      
2.  4πGMR213-R
3. GMT24π213-R                   
4.  GMT24π213+R

Subtopic:  Kepler's Laws |
 66%
Level 2: 60%+
Hints

The rotation period of an earth satellite close to the surface of the earth is 83 minutes. The time period of another earth satellite in an orbit at a distance of three earth radii from its surface will be

1. 83 minutes                                   

2. 83×8 minutes

3. 664 minutes                                 

4. 249 minutes

Subtopic:  Kepler's Laws | Satellite |
 64%
Level 2: 60%+
Hints

advertisementadvertisement

If the distance between the earth and the sun becomes half its present value, the number of days in a year would have been
1. 64.5                                     

2. 129

3. 182.5                                   

4. 730

Subtopic:  Kepler's Laws |
 68%
Level 2: 60%+
Hints