A man weighing 80 kg is standing in a trolley weighing 320 kg. The trolley is resting on frictionless horizontal rails. If the man starts walking on the trolley with a speed of 1 m/s, then after 4 sec his displacement relative to the ground will be
1. 5 m
2. 4.8 m
3. 3.2 m
4. 3.0 m
Six particles situated at the corners of a regular hexagon of side \(a\) move at constant speed \(v\). Each particle maintains a direction towards the particle at the next. The time which the particles will take to meet each other is:
1. \(\frac{2 a}{v}~\text{sec}\)
2. \(\frac{a}{v}~\text{sec}\)
3. \(\frac{2 a}{3v}~\text{sec}\)
4. \(\frac{3 a}{v}~\text{sec}\)
A ship A is moving westwards with a speed of 10 km and a ship B, 100 km south of A is moving northwards with a speed of 10 km . The time after which the distance between them becomes the shortest, is:
1. 5 hr
2. hr
3. hr
4. 0 hr
A river is flowing with a speed of 1 km/hr. A swimmer wants to go to point 'C' starting from 'A'. He swims with a speed of 5 km/hr, at an angle with respect to the river. If \(\text {AB = BC = 400 m}\). Then

1. The time taken by the man is 12 min
2. The time taken by the man is 8 min
3. The value of is 45
4. The value of is 53
Two men \(P\) and \(Q\) are standing at corners \(A\) and \(B\) of a square \(ABCD\) of side \(8~\text m.\) They start moving along the track with a constant speed \(2~\text{m/s}\) and \(10~\text {m/s}\) respectively. The time when they will meet for the first time is equal to:

1. \(2~\text{sec}\)
2. \(3~\text{sec}\)
3. \(1~\text{sec}\)
4. \(6~\text{sec}\)
A boat is sent across a river in perpendicular direction with a velocity of 8 km/hr. If the resultant velocity of boat is 10 km/hr, then velocity of the river is :
1. 10 km/hr
2. 8 km/hr
3. 6 km/hr
4. 4 km/hr
A boat is moving with velocity of in river and water is moving with a velocity of with respect to ground. Relative velocity of boat with respect to water is:
1.
2.
3.
4.
A boat moves with a speed of 5 km/h relative to water in a river flowing with a speed of 3 km/h and having a width of 1 km. The minimum time taken around a round trip(returning to the initial point) is:
1. 5 min
2. 60 min
3. 20 min
4. 30 min
A river is flowing from W to E with a speed of 5 m/min. A man can swim in still water with a velocity 10 m/min. In which direction should the man swim so as to take the shortest possible path to go to the south.
1. 30° with downstream
2. 60° with downstream
3. 120° with downstream
4. South
A train is moving towards the east and a car is along the north at the same speed. The observed direction of the car to the passenger on the train is:
| 1. | East-north direction | 2. | West-north direction |
| 3. | South-east direction | 4. | None of these |