If the angle between the vector AandB is  θ, the value of the product B×A.A is equal to:

1. BA2cosθ

2. BA2sinθ

3. BA2sinθcosθ

4. zero

Subtopic:  Vector Product |
 51%
Level 3: 35%-60%
Hints
Links

A vector A points, vertically upward and, B points towards north. The vector product A×B is -

1.  along west

2.  along east

3.  zero

4.  vertically downward

Subtopic:  Vector Product |
 58%
Level 3: 35%-60%
Hints

The linear velocity of a rotating body is given by v=ω×r, where ω is the angular velocity and r is the radius vector. The angular velocity of a body, ω=i^-2j^+2k^ and their radius vector is  r=4j^-3k^,then value of|v| will be:

1. 29units

2. 31units

3. 37units

4. 41units

Subtopic:  Vector Product |
 76%
Level 2: 60%+
Hints

advertisementadvertisement

If \(\theta\) is the angle between two vectors a and b, and |a×b|=a.b, then \(\theta\) is equal to:
1. \(0^\circ\)
2. \(180^\circ\)
3. \(135^\circ\)
4. \(45^\circ\)

Subtopic:  Vector Product |
 75%
Level 2: 60%+
Hints
Links

What is the torque of a force F=2i^-3j^+4k^newton acting at a point r=3i^+2j^+3k^ metre about the origin? (Given: τ=r×F)

1. 6i^-6j^+12k^

2. 17i^-6j^-13k^

3. -6i^+6j^-12k^

4. -17i^+6j^-13k^

Subtopic:  Vector Product |
 69%
Level 2: 60%+
Hints
Links

The scalar product of two vectors is 8 and the magnitude of vector product is 83. The angle between them is:

(1)  30°

(2)  60°

(3)  120°

(4)  150°

Subtopic:  Vector Product |
 74%
Level 2: 60%+
Hints

advertisementadvertisement

\(\overrightarrow{A}\) and \(\overrightarrow B\) are two vectors and \(\theta\) is the angle between them. If \(\left|\overrightarrow A\times \overrightarrow B\right|= \sqrt{3}\left(\overrightarrow A\cdot \overrightarrow B\right),\) then the value of \(\theta\) will be:

1. \(60^{\circ}\) 2. \(45^{\circ}\)
3. \(30^{\circ}\) 4. \(90^{\circ}\)
Subtopic:  Scalar Product | Vector Product |
 80%
Level 1: 80%+
AIPMT - 2007
Hints
Links

The value of the unit vector, which is perpendicular to both \(A=\hat{i} + 2\hat{j} + 3 \hat{k}\) and \(B= \hat{i} - 2\hat{j} - 3 \hat{k}\) is equal to:

1. \(\frac{\hat{i}   +   2 \hat{j}   +   3 \hat{k}}{6}\)
2. \(\frac{6\hat{j} -4 \hat{k}}{\sqrt{52}}\)
3. \(\frac{6\hat{j} +4 \hat{k}}{\sqrt{52}}\)
4. \(\frac{2\hat{i} - \hat{j}}{\sqrt{5}}\)

Subtopic:  Vector Product |
 70%
Level 2: 60%+
Hints
Links

Which of the following option is not true, if A=3i^+4j^ and B=6i^+8j^, where \(\mathrm{A}\) and \(\mathrm{B}\) are the magnitudes of AandB?
1. A×B=0

2. AB=12

3. A·B=48

4. \(\mathrm{A}=5\)

Subtopic:  Vector Product |
 71%
Level 2: 60%+
Hints
Links

advertisementadvertisement

If a=2i^+j^ and b=3i^+2j^, then a×b=? 

1. 1 2.  65
3. 8 4. 4
Subtopic:  Vector Product |
 74%
Level 2: 60%+
Hints
Links