NEET Questions Solved


Concept Videos :-

#23 | Vectors : Resolution 2D
#24 | Vectors: Resolution 3D

Concept Questions :-

Resolution of vectors

 

(1)

 

          

Vector A has 2 components,Component of A along B ,A =A.BBB2Component  to B=ASo,  A=A+A        A=A-A            = A-A.BBB2

Perpendicular component of A to B is= A-A.BBB2= 3i^+4j^-72i+j^= -i2+j2

Difficulty Level:

  • 32%
  • 33%
  • 22%
  • 15%
Crack NEET with Online Course - Free Trial (Offer Valid Till September 17, 2019)

A child pulls a box with a force of 200 N at an angle of 60°above the horizontal. Then the horizontal and vertical components of the force are -

              

(A)  100 N, 175 N

(B)  86.6 N, 100 N

(C)  100 N, 86.6 N

(D)  100 N, 0 N

Concept Videos :-

#23 | Vectors : Resolution 2D
#24 | Vectors: Resolution 3D

Concept Questions :-

Resolution of vectors

Difficulty Level:

  • 65%
  • 10%
  • 20%
  • 6%
Crack NEET with Online Course - Free Trial (Offer Valid Till September 17, 2019)

A man rows a boat with a speed of 18 km/hr in northwest direction. The shoreline makes an angle of 15° south of west. Obtain the component of the velocity of the boat along the shoreline.

(A)  9 km/hr

(B)  1832 km/hr

(C)  18 cos 15° km/hr

(D)  18 cos 75° km/hr

Concept Videos :-

#23 | Vectors : Resolution 2D
#24 | Vectors: Resolution 3D

Concept Questions :-

Resolution of vectors

(A)

 

                         

                       

Component of velocity along Shoreline= Vman cos 60°                                                                    = 18 × 12                                                                    = 9 km/hr

Difficulty Level:

  • 49%
  • 19%
  • 23%
  • 11%
Crack NEET with Online Course - Free Trial (Offer Valid Till September 17, 2019)

If A=2i^+j^ & B=i^-j^ . Find component of A along B & perpendicular to B.

(A)  i^-j^2, 32i^+j^

(B)  i^-j^2,- 23i^+j^

(C)  i^-j^2, -32i^-j^

(D)  i^-j^2, 23i^-j^

Concept Videos :-

#23 | Vectors : Resolution 2D
#24 | Vectors: Resolution 3D

Concept Questions :-

Resolution of vectors

(A)

 

               

A=A+A                                               ......iA: Vector component of A along BA: Vector component of A perpendicular to BA= A cosθ B^      Using A.B=AB cosθA cosθ=A.BB    = A.BB BB    B^=BBwhere B^ is unit vector along vector B    = 2i^+j^.i^-j^12+-12 i^-j^12+-12A=i^-j^2        Using  .....i     A=A-A           =2i^+j^-i^-j^2           = 3i^+j^2

 

 

Difficulty Level:

  • 59%
  • 14%
  • 21%
  • 8%
Crack NEET with Online Course - Free Trial (Offer Valid Till September 17, 2019)