1. | \(_{40}^{91}\mathrm{Zr}\) | 2. | \(_{36}^{101}\mathrm{Kr}\) |
3. | \(_{36}^{103}\mathrm{Kr}\) | 4. | \(_{56}^{144}\mathrm{Ba}\) |
1. | \(52~ \Omega\) | 2. | \(55~ \Omega\) |
3. | \(60 ~\Omega\) | 4. | \(26~ \Omega\) |
An electron is accelerated from rest through a potential difference of \(V\) volt. If the de Broglie wavelength of an electron is \(1.227\times10^{-2}~\text{nm}.\) What will be its potential difference?
1. \(10^{2}~\text{V}\)
2. \(10^{3}~\text{V}\)
3. \(10^{4}~\text{V}\)
4. \(10^{5}~\text{V}\)
Light with an average flux of \(20~\text{W/cm}^2\) falls on a non-reflecting surface at normal incidence having a surface area \(20~\text{cm}^2\). The energy received by the surface during time span of \(1\) minute is:
1. \(12\times 10^{3}~\text{J}\)
2. \(24\times 10^{3}~\text{J}\)
3. \(48\times 10^{3}~\text{J}\)
4. \(10\times 10^{3}~\text{J}\)
A screw gauge has the least count of \(0.01~\text{mm}\) and there are \(50\) divisions in its circular scale. The pitch of the screw gauge is:
1. | \(0.25~\text{mm}\) | 2. | \(0.5~\text{mm}\) |
3. | \(1.0~\text{mm}\) | 4. | \(0.01~\text{mm}\) |
The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
1. | \(\dfrac{3\pi}{2}\text{rad}\) | 2. | \(\dfrac{\pi}{2}\text{rad}\) |
3. | zero | 4. | \(\pi ~\text{rad}\) |
The Brewster's angle for an interface should be:
1. \(30^{\circ}<i_b<45^{\circ}\)
2. \(45^{\circ}<i_b<90^{\circ}\)
3. \(i_b=90^{\circ}\)
4. \(0^{\circ}<i_b<30^{\circ}\)
Two particles of mass \(5~\text{kg}\) and \(10~\text{kg}\) respectively are attached to the two ends of a rigid rod of length \(1~\text{m}\) with negligible mass. The centre of mass of the system from the \(5~\text{kg}\) particle is nearly at a distance of:
1. \(50~\text{cm}\)
2. \(67~\text{cm}\)
3. \(80~\text{cm}\)
4. \(33~\text{cm}\)
A charged particle having drift velocity of \(7.5\times10^{-4}~\text{ms}^{-1}\) in an electric field of \(3\times10^{-10}~\text{Vm}^{-1},\) has mobility of:
1. \(2.5\times 10^{6}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
2. \(2.5\times 10^{-6}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
3. \(2.25\times 10^{-15}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
4. \(2.25\times 10^{15}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)