List-I (\(x \text{-}y\) graphs) |
List-II (Situations) |
||
(a) | (i) | Total mechanical energy is conserved | |
(b) | |
(ii) | Bob of a pendulum is oscillating under negligible air friction |
(c) | |
(iii) | Restoring force of a spring |
(d) | |
(iv) | Bob of a pendulum is oscillating along with air friction |
(a) | (b) | (c) | (d) | |
1. | (iv) | (ii) | (iii) | (i) |
2. | (iv) | (iii) | (ii) | (i) |
3. | (i) | (iv) | (iii) | (ii) |
4. | (iii) | (ii) | (i) | (iv) |
Statement-I: | The law of radioactive decay states that the number of nuclei undergoing the decay per unit time is inversely proportional to the total number of nuclei in the sample. |
Statement-II: | The half life of a radionuclide is the sum of the left time of all nuclei, divided by the initial concentration of the nuclei at time \(t=0.\) |
1. | Both Statement-I and Statement-II are correct. |
2. | Both Statement-I and Statement-II are incorrect. |
3. | Statement-I is correct but Statement-II is incorrect. |
4. | Statement-I is incorrect but Statement-II is correct. |
1. | \(\text{If}~P_1>P_2~\text{then}~T_1<T_2\) |
2. | \(\text{If}~V_2>V_1~\text{then}~T_2>T_1\) |
3. | \(\text{If}~V_2>V_1~\text{then}~T_2<T_1\) |
4. | \(\text{If}~P_1>P_2~\text{then}~V_1>V_2\) |
1. | \(0.7~\text{kg-m}^2\) | 2. | \(3.22~\text{kg-m}^2\) |
3. | \(30.8~\text{kg-m}^2\) | 4. | \(0.07~\text{kg-m}^2\) |
The magnetic flux linked to a circular coil of radius \(R\) is given by:
\(\phi=2t^3+4t^2+2t+5\) Wb.
What is the magnitude of the induced EMF in the coil at \(t=5\) s?
1. \(108\) V
2. \(197\) V
3. \(150\) V
4. \(192\) V