| 1. | \(-61.75 \mathrm{{~kJ} {~mol}}^{-1}\) | 2. | \(+5.006 \mathrm{{~kJ} {~mol}}^{-1}\) |
| 3. | \(-5.006 \mathrm{{~kJ} {~mol}}^{-1}\) | 4. | \(+61.75 \mathrm{{~kJ} {~mol}}^{-1}\) |
| Assertion (A): | In equation \(\Delta_{\mathrm{r}} \mathrm{G}=-\mathrm{nFE} _{\text {cell }}, \) value \(\mathrm{\Delta_rG }\) depends on n. |
| Reason (R): | \(\mathrm{E_{cell} }\) is an intensive property and \(\mathrm{\Delta_rG }\) is an extensive property. |
| 1. | (A) is False but (R) is True. |
| 2. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
| 3. | Both (A) and (R) are True and (R) is not the correct explanation of (A). |
| 4. | (A) is True but (R) is False. |
| 1. | –200.27 kJ mol–1 | 2. | –212.27 kJ mol–1 |
| 3. | –212.27 J mol–1 | 4. | –200.27 J mol–1 |
Given the following cell reaction:
\(\mathrm{2Fe^{3+}(aq) \ + \ 2I^{-}(aq)\rightarrow 2Fe^{2+}(aq) \ + \ I_{2}(aq)}\)
[Given: \(F = 96500\) \(C\) \(mol^{- 1}\)]
1. \(23 . 16\) \(kJ\) \(mol^{- 1}\)
2. \(- 46 . 32\) \(kJ\) \(mol^{- 1}\)
3. \(- 23 . 16\) \(kJ\) \(mol^{- 1}\)
4. \(46 . 32\) \(kJ\) \(mol^{- 1}\)
For a cell involving one electron \(E_{cell}^{\ominus} = 0 . 59 V\) at 298 K. The equilibrium constant for the cell reaction is :
\(\mathrm{[Given~ that~ \frac {2.303 ~RT}{F} = 0.059 ~V~ at~ T = 298 K]}\)
| 1. | \(1 . 0 \times \left(10\right)^{30}\) | 2. | \(1 . 0 \times \left(10\right)^{2}\) |
| 3. | \(1 . 0 \times \left(10\right)^{5}\) | 4. | \(1 . 0 \times \left(10\right)^{10}\)
|