Hydrolysis of sucrose is given by the following reaction
Sucrose + H2O Glucose + Fructose
If the equilibrium constant (Kc) is 21013 at 300 K, the value of at the same temperature will be:
1. 8.314 J mol–1 K–1300 Kln (21013)
2. 8.314 J mol–1 K–1300 Kln (31013)
3. –8.314 J mol–1 K–1300 Kln (41013)
4. –8.314 J mol–1 K–1300 Kln (21013)
A process among the following shows decrease in entropy is :
1. \(2 \text H \left(g\right)\rightarrow\text H_{2} \left(g\right)\)
2. Evaporation of water
3. Expansion of a gas at a constant temperature
4. Sublimation of solid to gas
For a given reaction, ∆H = 35.5 kJ mol–1 and ∆S = 83.6 J K–1 mol–1. The reaction is spontaneous at:
(Assume that ∆H and ∆S do not vary with temperature)
1. T > 425K
2. All temperatures
3. T > 298K
4. T < 425K
The correct statement for a reversible process in a state of equilibrium is:
1. G = – 2.30RT log K
2. G = 2.30RT log K
3. Go = – 2.30RT log K
4. Go = 2.30RT log K
For the reaction:
\(\mathrm{X}_2 \mathrm{O}_4(l) \rightarrow 2 \mathrm{XO}_2(g)\)
with the given values \(\Delta U = 2.1 \, \text{kcal}\) and \(\Delta S = 20 \, \text{cal K}^{-1}\) at \(300 \, \text{K}\), what is the value of \(\Delta G\)?
1. 2.7 kcal
2. –2.7 kcal
3. 9.3 kcal
4. –9.3 kcal
In which of the following reactions, the standard reaction entropy change
is positive, and standard Gibb's energy change
decreases sharply with increasing temperature?
1. | C(graphite) + \(\frac{1}{2}\)O2(g) → CO(g) |
2. | CO(g) + \(\frac{1}{2}\)O2(g) → CO2(g) |
3. | Mg(s) + \(\frac{1}{2}\)O2(g) → MgO(s) |
4. | \(\frac{1}{2}\)C(graphite) + \(\frac{1}{2}\)O2(g) → \(\frac{1}{2}\)CO2(g) |
Standard entropies of X2, Y2 and XY3 are 60, 40 and 50JK-1mol-1 respectively. For the reaction
to be at equilibrium, the temperature should be:
1. 750 K
2. 1000 K
3. 1250 K
4. 500 K
For vaporization of water at 1 atmospheric pressure, the values of ∆H and ∆S are 40.63 kJ mol–1 and 108.8 JK–1 mol–1, respectively. The temperature when Gibbs energy change (∆G) for this transformation will be zero, is:
1. 393.4 K
2. 373.4 K
3. 293.4 K
4. 273.4 K