1. | \(\begin{aligned} & \mathrm{E}_{\mathrm{n}}\left(\mathrm{Li}^{2+}\right)=-19.62 \times 10^{-16} \mathrm{~J} ; \\ & \mathrm{r}_{\mathrm{n}}\left(\mathrm{Li}^{2+}\right)=17.6\mathrm{pm} \\ & \mathrm{E}_{\mathrm{n}}\left(\mathrm{He}^{+}\right)=8.72 \times 10^{-16} \mathrm{~J} ; \\ & \mathrm{r}_{\mathrm{n}}\left(\mathrm{He}^{+}\right)=26.4 \mathrm{pm} \end{aligned}\) |
2. | \(\begin{aligned} & \mathrm{E}_{\mathrm{n}}\left(\mathrm{Li}^{2+}\right)=-8.72 \times 10^{-16} \mathrm{~J} ; \\ & \mathrm{r}_{\mathrm{n}}\left(\mathrm{Li}^{2+}\right)=17.6 \mathrm{pm} \\ & \mathrm{E}_{\mathrm{n}}\left(\mathrm{He}^{+}\right)=-19.62 \times 10^{-16} \mathrm{~J} ; \\ & \mathrm{r}_{\mathrm{n}}\left(\mathrm{He}^{+}\right)=17.6 \mathrm{pm} \end{aligned}\) |
3. | \(\begin{aligned} & \mathrm{E}_{\mathrm{n}}\left(\mathrm{Li}^{2+}\right)=- 19.62 \times 10^{-18} \mathrm{~J} \\ & \mathrm{r}_{\mathrm{n}}\left(\mathrm{Li}^{2+}\right)=17.6 \mathrm{pm} \\ & \mathrm{E}_{\mathrm{n}}\left(\mathrm{He}^{+}\right)=-8.72 \times 10^{-18} \mathrm{~J} \\ & \mathrm{r}_{\mathrm{n}}\left(\mathrm{He}^{+}\right)=26.4 \mathrm{pm} \end{aligned}\) |
4. | \(\begin{aligned} & \mathrm{E}_{\mathrm{n}}\left(\mathrm{Li}^{2+}\right)=-8.72 \times 10^{-18} \mathrm{~J} \\ & \mathrm{r}_{\mathrm{n}}\left(\mathrm{Li}^{2+}\right)=26.4 \mathrm{pm} \\ & \mathrm{E}_{\mathrm{n}}\left(\mathrm{He}^{+}\right)=-19.62 \times 10^{-18} \mathrm{~J} ; \\ & \mathrm{r}_{\mathrm{n}}\left(\mathrm{He}^{+}\right)=17.6 \mathrm{pm} \end{aligned} \) |
1. | \(-\dfrac x9\) | 2. | \(-4x\) |
3. | \(-\dfrac 49x\) | 4. | \(-x\) |
Statement I: | The energy of the \(\mathrm{He}^{+}\) ion in \(n=2\) state is same as the energy of H atom in \(n=1\) state |
Statement II: | It is possible to determine simultaneously the exact position and exact momentum of an electron in \(\mathrm{H}\) atom. |
Statement I: | The Balmer spectral line for H atom with lowest energy appears at \(\dfrac 5{36}\mathrm{ R_H~ cm^{-1}}\) (\(\mathrm{R_H}\) = Rydberg constant) |
Statement II: | When the temperature of a black body increases, the maxima of the curve (intensity versus wavelength) shifts towards shorter wavelength. |
1. | Statement I is correct and Statement II is incorrect. |
2. | Statement I is incorrect and Statement II is correct. |
3. | Both Statement I and Statement II are correct. |
4. | Both Statement I and Statement II are incorrect. |
In hydrogen atom, what is the de Broglie wavelength of an electron in the second Bohr orbit is: [Given that Bohr radius, ]
1. 211.6 pm
2. 211.6 pm
3. pm
4. 105.8 pm