The half-life of 92U238 against \(\alpha\)-decay is 4.5 × 109 year The time taken in a year for the decay of the 15/16 part of this isotope will be:

1. 9.0×109

2. 1.8×1010

3. 4.5×109

4. 2.7×1010

Subtopic:  First Order Reaction Kinetics |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

For a chemical reaction A product, the postulated mechanism of the reaction is as follows.

Ak2k13BR.D.Sk3C
If the rate constants for individual reactions are  k1, k2 and k3, and activation energies are 
\(E_{a_{1}} = 180 \ kJ \ mol^{-1}, \)
\( E_{a_{2}} = 90 \ kJ \ mol^{-1}, \)
\( E_{a_{3}} = 40 \ kJ \ mol^{-1}\)
then overall activation energy for the reaction given above is

1. 70 kJ mol-1

2. -10 kJ mol-1

3. 310 kJ mol-1

4. 130 kJ mol-1

Subtopic:  Arrhenius Equation |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

For a first-order reaction AP, rate constant (k) [dependent on temperature (T)] was found
to follow the equation \(log \ k \ = \ (-2000)\frac{1}{T} \ + \ 6.0\). The pre-exponential factor A and
the activation energy Ea, respectively, are:

1. 1.0×106 s-1 and 9.2 kJ mol-1

2. 6.0 s-1 and 16.6 kJ mol-1

3. 1.0×106 s-1 and 16.6 kJ mol-1

4. 1.0×106 s-1 and 38.3 kJ mol-1

Subtopic:  Arrhenius Equation |
 51%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

An increase in the concentration of the reactants of a reaction leads to a change in:

1. Heat of reaction 2. Threshold energy
3. Collision frequency 4. Activation energy
Subtopic:  Arrhenius Equation |
 69%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The rate constant for a first-order reaction is 4.606×10-3 s-1. The time required to reduce 2.0 g of the reactant to 0.2 g will be:

1. 200 s 2. 500 s
3. 1000 s 4. 100 s
Subtopic:  First Order Reaction Kinetics |
 85%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The reaction below is an example of:

CH3COOC2H5   +   H2O   \(\xrightarrow[]{H^{+}}\) CH3COOH  +   C2H2OH
Ethyl acetate                           Acetic acid     Ethyl alcohol



1. Pseudo-first-order reaction

2. First-order reaction

3. Second order reaction

4. Third-order reaction

Subtopic:  Order, Molecularity and Mechanism |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

For a general reaction A  B, the plot of the concentration of A vs. time is given in the figure.
 

The slope of the curve will be:

1. -k 2. -k/2
3. -k2 4. -k/3
Subtopic:  Definition, Rate Constant, Rate Law |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The half-life of the two samples is 0.1 and 0.4 seconds, respectively. Their concentrations are 200 and 50, respectively. The order of the reactions will be:

1. 0

2. 2

3. 1

4. 4

Subtopic:  First Order Reaction Kinetics |
 56%
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints

For a reaction A → B, the Arrhenius equation is given as  \(log_{e}k \ = \ 4 \ - \ \frac{1000}{T}\) the activation energy in J/mol for the given reaction will be:

1. 8314

2. 2000

3. 2814

4. 3412

Subtopic:  Arrhenius Equation |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A first-order reaction takes 40 min for 30 % decomposition. The half life of the reaction will be: 

1. 88.8 min 2. 94.3 min
3. 67.2 min 4. 77.7 min

Subtopic:  First Order Reaction Kinetics |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh