The rate constant for a reaction of zero-order in A is 0.0030 mol L-1 s-1. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?

1. 8.3 sec

2. 0.83 sec

3. 83 sec

4. 10.3 sec

Subtopic:  Definition, Rate Constant, Rate Law |
 77%
Level 2: 60%+
Hints

The reaction of hydrogen and iodine monochloride is given as: 
H2(g) + 2ICl(g) → 2HCl(g) + I2(g
This reaction is of first order with respect to H2(g) and ICl(g), for which of the following proposed mechanisms:
Mechanism A: 
H2(g) + 2ICl(g) → 2HCl(g) + I2(g
Mechanism B: 
H2(g) + ICl(g) →HCl(g) + HI(g); slow 
HI(g) + ICl(g) →HCl(g) + I2(g); fast

1. B Only

2. A and B both

3. Neither A nor B

4. A only

Subtopic:  First Order Reaction Kinetics |
 64%
Level 2: 60%+
AIPMT - 2007
Hints

If 'a' is the initial concentration of a substance that reacts according to zero-order kinetics and k is the rate constant, then the time for the reaction to go to completion is:
1. a/k
2. 2/ka
3. k/a
4. 2k/a

Subtopic:  First Order Reaction Kinetics |
 85%
Level 1: 80%+
Hints

advertisementadvertisement

Consider the first-order gas-phase decomposition reaction given below.

A(g) → B(g) + C(g)

The initial pressure of the system before the decomposition of A was Pi. After the lapse of time t, the total pressure of the system increased by X units and became Pt. The rate constant k for the reaction is:

1. k=2.303tlogPiPix 2. k=2.303tlogPi2PiPt
3. k=2.303tlogPi2Pi+Pt 4. k=2.303tlogPiPi+x
Subtopic:  First Order Reaction Kinetics |
 66%
Level 2: 60%+
Hints
Links

The correct graphical representation of first-order reaction is:

(a)  (b)
(c) (d)

   

1. (a) and (b) 2. (b) and (c)
3. (c) and (d) 4. (a) and (d)
Subtopic:  First Order Reaction Kinetics |
 83%
Level 1: 80%+
Hints
Links

Match the statements in Column I and Column II :
Column I
(Thermodynamic/Kinetic Principle)
Column II
(Impact on Reaction Dynamics)
A. Catalyst alters the rate of reaction 1. Proper orientation is not always there
B. e-Ea/RT 2. By lowering the activation energy
C. Energetically favorable reactions are sometimes slow 3. Total probability is one
D. The area under the Maxwell-Boltzmann curve is constant 4. Refers to the fraction of molecules with energy
equal to or greater than the activation energy

Codes:

A B C D
1. 2 4 1 3
2. 3 1 4 2
3. 1 4 3 2
4. 3 4 1 2
Subtopic:  Catalyst |
 91%
Level 1: 80%+
Hints

advertisementadvertisement

Select the correct option based on statements below:

Assertion (A): The enthalpy of reaction remains constant in the presence of a catalyst.
Reason (R): A catalyst participating in the reaction forms a different activated complex and lowers down the activation energy but the difference in energy of the reactant and the product remains the same.
 
1. Both (A) and (R) are True and (R) is the correct explanation of (A).
2. Both (A) and (R) are True but (R) is not the correct explanation of (A).
3. (A) is True but (R) is False.
4. Both (A) and (R) are False.
Subtopic:  Catalyst |
 79%
Level 2: 60%+
Hints
Links

For a first-order reaction A → B the reaction rate at a reactant concentration of 0.01M is found to be 2.0×105 mole L1s1. The half-life period of the reaction is:

1. 300s 2. 30s
3. 220s 4. 347s
Subtopic:  First Order Reaction Kinetics |
 85%
Level 1: 80%+
AIPMT - 2005
Hints

The decomposition of N2O5 in CCl4 at 318K has been studied by monitoring the concentration of N2O5 in the solution. Initially, the concentration of N2O5 is 2.33 mol L–1 and after 184 minutes, it is reduced to 2.08 mol L–1. The reaction takes place according to the equation

2 N2O5 (g)  4 NO2 (g) + O2 (g)

The rate of production of NO2 during this period is-

1. 5.72 × 10
–3 mol L–1 min–1
2. 2.72 × 10
–3 mol L–1 min–1
3. 1.72 × 10
–5 mol L–1 min–1
4. 6.72 × 10
–4 mol L–1 min–1

Subtopic:  Definition, Rate Constant, Rate Law |
 67%
Level 2: 60%+
Hints

advertisementadvertisement

In a first order reaction, time required for completion of 99.9% is X times of half-life (t1/2) of the reaction. When reaction is completed 99.9%, [R]n = [R]0 – 0.999[R]0 .The value of X is-

1. 5
2. 10
3. 15
4. 20

Subtopic:  First Order Reaction Kinetics |
 83%
Level 1: 80%+
Hints