The two long, parallel wires shown in the diagram carry equal and opposite currents \(i\). The currents change linearly with time: \(\dfrac{di} {dt}\) = a constant = \(K\). The small circuit is situated midway between the wires and has an area \(A\). The emf induced in the small circuit is: 
1. zero 2. \(\dfrac{\mu_{0} A K}{2 \pi l}\)
3. \(\dfrac{\mu_{0} A K}{ \pi l}\) 4. \(\dfrac{2 \mu_{0} A K}{\pi l}\)
Subtopic:  Magnetic Flux |
Level 3: 35%-60%
Hints

A square wire loop of resistance \(0.5\) \(\Omega\)/m, having a side \(10\) cm and made of \(100\) turns is suddenly flipped in a magnetic field \(B,\) which is perpendicular to the plane of the loop. A charge of \(2\times10^{-4} \) C passes through the loop. The magnetic field \(B\) has the magnitude of: 
1. \(2\times10^{-6} \) T
2. \(4\times10^{-6} \) T
3. \(2\times10^{-3} \) T
4. \(4\times10^{-3} \) T
Subtopic:  Magnetic Flux |
Level 3: 35%-60%
Hints

What is the SI unit of \({\large\frac{\text{(magnetic flux)}}{\text{(electric resistance)}}}?\)
1. volt 2. ampere
3. coulomb 4. volt-second
Subtopic:  Magnetic Flux |
 59%
Level 3: 35%-60%
Hints

advertisementadvertisement