A capacitor of 4 is connected as shown in the circuit. The internal resistance of the battery is 0.5 . The amount of charge on the capacitor plates will be:
1. 0
2. 4
3. 16
4. 8
The colour code of resistance is given below:
The values of resistance and tolerance, respectively are:
1. 47 k, 10%
2. 4.7 k, 5%
3. 470 , 5%
4. 470 k, 5%
Consider a capacitor-charging circuit. Let Q1 be the charge given to the capacitor in a time interval of 10 ms and Q2 be the charge given in the next time interval of 10 ms. Let 10 µC charge be deposited in a time interval J, and the next 10 µC charge is deposited in the next time interval t2
1. Q1 > Q2 , t1 > t2
2. Q1 > Q2 , t1 < t2
3. Q1 < Q2 , t1 > t2
4. Q1 < Q2 , t1 < t2
(a) The current in each of the two discharging circuits is zero at t = 0.
(b) The currents in the two discharging circuits at t = 0 are equal but not zero.
(c) The currents in the two discharging circuits at t = 0 are unequal.
(d) C1 loses 50% of its initial charge sooner than C2 loses 50% of its initial charge
Choose the correct option
1. (a) only
2. (b), (d)
3. (c), (d)
4. (a), (d)
Assertion (A): | \(\frac14\) of its initial value. | When the voltage across the capacitor reaches 50% of its maximum value, the rate of heat dissipation in the resistor falls to
Reason (R): | \(\frac14\) of its initial value. | The voltage across the capacitor is proportional to the charge on its plates, while the rate of flow of charge is the current (i). This current (i) falls exponentially with a time constant T, and it falls to 50% of its initial value when the capacitor is 50% charged. The rate of heat dissipation, being proportional to i2, falls to
1. | Both (A) and (R) are true and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are true but (R) is not the correct explanation of (A). |
3. | (A) is true but (R) is false. |
4. | (A) is false but (R) is true. |
When the key K is pressed at time t = 0, which of the following statement about the current I in the resistor AB of the given circuit is true?
1. | I = 2 mA at all t |
2. | I oscillates between 1 mA and 2 mA |
3. | I = 1 mA at all t |
4. | At t = 0 , I = 2 mA and with time, it goes to 1 mA |
In the figure below, what is the potential difference between the point A and B and between B and C, respectively, in steady state?
1.
2.
3.
4.
The value of resistance for the colour code of the given resistor is:
1. \((36\pm36)~k\Omega~\)
2. \((470\pm47)~k\Omega~\)
3. \((360\pm36)~k\Omega~\)
4. \((360\pm18)~k\Omega~\)
A carbon resistor (47 ± 4.7) kΩ is to be marked with rings of different colours for its identification. The colour code sequence will be:
1. Violet - Yellow - Orange - Silver
2. Yellow - Violet - Orange - Silver
3. Yellow - Green - Violet - Gold
4. Green - Orange - Violet - Gold