The terminal voltage of the battery, whose emf is \(10~\text V\) and internal resistance  \(1~\Omega,\) when connected through an external resistance of \(4~\Omega\) as shown in the figure is:
              
1. \(6~\text V\) 2. \(8~\text V\)
3. \(10~\text V\) 4. \(4~\text V\)
Subtopic:  EMF & Terminal Voltage |
 64%
From NCERT
NEET - 2024
Please attempt this question first.
Hints
Please attempt this question first.

A cell of emf  \(4~\text{V}\) and internal resistance \(0.5~\Omega\) is connected to a \(7.5~\Omega\) external resistance. The terminal potential difference of the cell is:
1. \(3.75~\text{V}\) 2. \(4.25~\text{V}\)
3. \(4~\text{V}\) 4. \(0.375~\text{V}\)
Subtopic:  EMF & Terminal Voltage |
 71%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A set of '\(n\)' equal resistors, of value '\(R\)' each, are connected in series to a battery of emf '\(E\)' and internal resistance '\(R\)'. The current drawn is \(I.\) Now, if '\(n\)' resistors are connected in parallel to the same battery, then the current drawn becomes \(10I.\) The value of '\(n\)' is:

1. \(10\) 2. \(11\)
3. \(20\) 4. \(9\)
Subtopic:  EMF & Terminal Voltage |
 74%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Internal resistance of a \(2.1~\text{V}\) cell which gives a current of \(0.2~\text{A}\) through a resistance of \(10~\Omega\) is:
1. \(0.5~\Omega\)
2. \(0.8~\Omega\)
3. \(1.0~\Omega\)
4. \(0.2~\Omega\)
Subtopic:  EMF & Terminal Voltage |
 83%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A cell having an emf \(\varepsilon\) and internal resistance \(r\) is connected across a variable external resistance \(R\). As the resistance \(R\) is increased, the plot of potential difference \(V\) across \(R\) is given by:

1. 2.
3. 4.
Subtopic:  EMF & Terminal Voltage |
 61%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A current of \(2~\text{A}\) flows through a \(2~\Omega\) resistor when connected across a battery. The same battery supplies a current of \(0.5~\text{A}\) when connected across a \(9~\Omega\) resistor. The internal resistance of the battery is:

1. \(\dfrac{1}{3}~\Omega\) 2. \(\dfrac{1}{4}~\Omega\)
3. \(1~\Omega\) 4. \(0.5~\Omega\)
Subtopic:  EMF & Terminal Voltage |
 78%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A student measures the terminal potential difference \(V\) of a cell (of emf \( E\) and internal resistance \(R\)) as a function of the current \(I\) flowing through it. The slope and intercept of the graph between \(V\) and \(I\), respectively, is equal to:
1. \(E\) and \(-r\)
2. \(-r\) and \(E\)
3. \(r\) and \(-E\)
4. \(-E\) and \(r\)
Subtopic:  EMF & Terminal Voltage |
 69%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the circuit shown, the current through the 4Ω resistors is 1 A when the points P and M are connected to a DC voltage source. The potential difference between the points M and N is:

            

1.  1.5 V

2.  1.0 V

3.  0.5 V

4.  3.2 V

Subtopic:  Combination of Resistors | EMF & Terminal Voltage |
 60%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A battery is charged at a potential of \(15\) V for \(8\) hours when the current flowing is \(10\) A. The battery on discharge supplies a current of \(5\) A for \(15\) hours. The mean terminal voltage during discharges is \(14\) V. The "Watt hour" efficiency of the battery is:
1. \(80\%\)
2. \(90\%\)
3. \(87.5\%\)
4. \(82.5\%\)

Subtopic:  EMF & Terminal Voltage |
 68%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

For a cell, the terminal potential difference is \(2.2\) V when the circuit is open and reduces to \(1.8\) V when the cell is connected to the resistance of \(R = 5~\Omega\). The internal resistance of cell (\(r\)) is:

1. \(\dfrac{10}{9}~ \Omega\) 2. \(\dfrac{9}{10}~ \Omega\)
3. \(\dfrac{11}{9}~ \Omega\) 4. \(\dfrac{5}{9}~ \Omega\)
Subtopic:  EMF & Terminal Voltage |
 72%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch