The net resistance of the circuit between \(A\) and \(B\) is:
1. | \(\frac{8}{3}~\Omega\) | 2. | \(\frac{14}{3}~\Omega\) |
3. | \(\frac{16}{3}~\Omega\) | 4. | \(\frac{22}{3}~\Omega\) |
Two batteries, one of emf \(18\) volts and internal resistance \(2~\Omega\) and the other of emf \(12\) V and internal resistance \(1~\Omega,\) are connected as shown. The voltmeter \(\mathrm{V}\) will record a reading of:
1. \(18\) V
2. \(30\) V
3. \(14\) V
4. \(15\) V
A \(5\text-\)ampere fuse wire can withstand a maximum power of \(1\) watt in a circuit. The resistance of the fuse wire is:
1. | \(5~\Omega\) | 2. | \(0.04~\Omega\) |
3. | \(0.2~\Omega\) | 4. | \(0.4~\Omega\) |
When a wire of uniform cross-section a, length l, and resistance R is bent into a complete circle, the resistance between any two diametrically opposite points will be:
1. R/2
2. R/4
3. R/8
4. 4R
For the network shown in the figure below, the value of the current \(i\) is:
1. \(\frac{18V}{5}\)
2. \(\frac{5V}{9}\)
3. \(\frac{9V}{35}\)
4. \(\frac{5V}{18}\)
A car battery of emf \(12~\text{V}\) and internal resistance \(5\times 10^{-2}~\Omega\) receives a current of \(60~\text{A}\) from an external source. The terminal voltage of the battery is:
1. | \(12~\text{V}\) | 2. | \(9~\text{V}\) |
3. | \(15~\text{V}\) | 4. | \(20~\text{V}\) |
If there are two bulbs of (\(40~\text{W},200~\text{V}\)), and (\(100~\text{W},200~\text{V}\)), then the correct relation for their resistance is:
1. \(R_{40}<R_{100}\)
2. \(R_{40}>R_{100}\)
3. \(R_{40}=R_{100}\)
4. no relation can be predicted
When three identical bulbs are connected in series, the consumed power is \(10\) W. If they are now connected in parallel then the consumed power will be:
1. \(30\) W
2. \(90\) W
3. \(\frac{10}{3}\) W
4. \(270\) W
According to the Faraday Law of electrolysis, the mass deposited at electrode will be proportional to:
1. m ∝ I2
2. m ∝ Q
3. m ∝ Q2
4. 'm' does not depend on Q
In a hot wire ammeter due to the flowing of the current, the temperature of the wire is increased by \(5^{\circ}\) C. If the value of the current is doubled, then the increase in temperature will be:
1. \(15^{\circ}\) C
2. \(20^{\circ}\) C
3. \(25^{\circ}\) C
4. \(30^{\circ}\) C