The distance of a planet from the sun is \(5\) times the distance between the earth and the sun. The time period of the planet is: 

1. \(5^{3/2}\) years 2. \(5^{2/3}\) years
3. \(5^{1/3}\) years 4. \(5^{1/2}\) years

Subtopic:  Kepler's Laws |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two satellites \(A\) and \(B\) go around the earth in circular orbits at heights of \(R_A ~\text{and}~R_B\) respectively from the surface of the earth. Assuming earth to be a uniform sphere of radius \(R_e\), the ratio of the magnitudes of their orbital velocities is:
1. \(\sqrt{\frac{R_{B}}{R_{A}}}\)
2. \(\frac{R_{B} + R_{e}}{R_{A} + R_{e}}\)
3. \(\sqrt{\frac{R_{B} + R_{e}}{R_{A} + R_{e}}}\)
4. \(\left(\frac{R_{A}}{R_{B}}\right)^{2}\)

Subtopic:  Orbital velocity |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A body is projected vertically upwards from the surface of a planet of radius \(R\) with a velocity equal to half the escape velocity for that planet. The maximum height attained by the body is:
1. \(\frac{R}{3}\)
2. \(\frac{R}{2}\)
3. \(\frac{R}{4}\)
4. \(\frac{R}{5}\)

Subtopic:  Escape velocity |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If the gravitational force between two objects were proportional to \(\frac{1}{R}\) (and not as\(\frac{1}{R^2}\)) where \(R\) is the separation between them, then a particle in circular orbit under such a force would have its orbital speed \(v\) proportional to:
1. \(\frac{1}{R^2}\)
2. \(R^{0}\)
3. \(R^{1}\)
4. \(\frac{1}{R}\)

Subtopic:  Orbital velocity |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two astronauts are floating in a gravitational free space after having lost contact with their spaceship. The two will:

1. keep floating at the same distance between them 
2. move towards each other 
3. move away from each other
4. will become stationary 

Subtopic:  Satellite |
 60%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The radii of the circular orbits of two satellites \(A\) and \(B\) of the earth are \(4R\) and \(R,\) respectively. If the speed of satellite \(A\) is \(3v,\) then the speed of satellite \(B\) will be:

1. \(3v/4\) 2. \(6v\)
3. \(12v\) 4. \(3v/2\)
Subtopic:  Orbital velocity |
 61%
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If two planets are at mean distances \(d_1\) and \(d_2\) from the sun and their frequencies are \(n_1\) and \(n_2\) respectively, then:
1. \(n^2_1d^2_1= n_2d^2_2\)
2. \(n^2_2d^3_2= n^2_1d^3_1\)
3. \(n_1d^2_1= n_2d^2_2\)
4. \(n^2_1d_1= n^2_2d_2\)

Subtopic:  Kepler's Laws |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A rocket of mass \(M\) is launched vertically from the surface of the earth with an initial speed \(v\). Assuming the radius of the earth to be \(R\) and negligible air resistance, the maximum height attained by the rocket above the surface of the earth is:
1. \(\frac{R}{\left(\frac{gR}{2v^2}-1\right)}\)
2. \(R\left({\frac{gR}{2v^2}-1}\right)\)
3. \(\frac{R}{\left(\frac{2gR}{v^2}-1\right)}\)
4. \(R{\left(\frac{2gR}{v^2}-1\right)}\)

Subtopic:  Gravitational Potential Energy |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For the moon to cease as the earth's satellite, its orbital velocity has to be increased by a factor of:

1. \(2\) 2. \(\sqrt{2}\)
3. \(1/\sqrt{2}\) 4. \(4\)
Subtopic:  Orbital velocity |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If a particle is dropped from a height \(h = 3R\) from the earth's surface, the speed with which the particle will strike the ground is:
1. \(\sqrt{3gR}\)
2. \(\sqrt{2gR}\)
3. \(\sqrt{1.5gR}\)
4. \(\sqrt{gR}\)

Subtopic:  Gravitational Potential Energy |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch