Two satellites \(S_1\) and \(S_2\) are revolving around a planet in coplanar and concentric circular orbits of radii \(R_1\) and \(R_2\) in the same direction respectively. Their respective periods of revolution are \(1~\text{hr}\) and \(8~\text{hr}.\) The radius of the orbit of satellite \(S_1\) is equal to \(10^4~\text{km}.\) Find the relative speed when they are closest to each other. 
1. \(2\pi \times 10^4~\text{kmph}\)
2. \(\pi \times 10^4~\text{kmph}\)
3. \(\frac{\pi}{2} \times 10^4~\text{kmph}\)
4. \(\frac{\pi}{3} \times 10^4~\text{kmph}\)

Subtopic:  Kepler's Laws |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The gravitational potential energy of an isolated system of three particles, each of mass \(m\) placed at three corners of an equilateral triangle of side \(l\) is: 
1. \(-Gm \over {l}^2\) 2. \(-Gm^2 \over 2{l}\)
3. \(-2Gm^2 \over {l}\) 4. \(-3Gm^2 \over {l}\)
Subtopic:  Gravitational Potential Energy |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A body of mass \(m\) is situated at a distance \(4R_e\) above the Earth's surface, where \(R_e\) is the radius of the Earth. What minimum energy should be given to the body so that it may escape? 
1. \(mgR_e\) 2. \(2mgR_e\)
3. \(\frac{mgR_e}{5}\) 4. \(\frac{mgR_e}{16}\)
Subtopic:  Gravitational Potential Energy |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

Two particles of mass \(m\) and \(4m\) are separated by a distance \(r.\) Their neutral point is at:
1. \(\frac{r}{2}~\text{from}~m\)
2. \(\frac{r}{3}~\text{from}~4m\)
3. \(\frac{r}{3}~\text{from}~m\)
4. \(\frac{r}{4}~\text{from}~4m\)

Subtopic:  Newton's Law of Gravitation |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Three identical point masses, each of mass \(1~\text{kg}\) lie at three points \((0,0),\)  \((0,0.2~\text{m}),\)  \((0.2~\text{m}, 0).\) The net gravitational force on the mass at the origin is:
1. \(6.67\times 10^{-9}(\hat i +\hat j)~\text{N}\)
2. \(1.67\times 10^{-9}(\hat i +\hat j) ~\text{N}\)
3. \(1.67\times 10^{-9}(\hat i -\hat j) ~\text{N}\)
4. \(1.67\times 10^{-9}(-\hat i -\hat j) ~\text{N}\)

Subtopic:  Newton's Law of Gravitation |
 68%
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The figure shows a planet in an elliptical orbit around the sun \((S).\) The ratio of the momentum of the planet at point \(A\) to that at point \(B\) is:

                           
1. \(\frac{r_1}{r_2}\)
2. \(\frac{r_{1}^{2}}{r_{2}^{2}}\)
3. \(\frac{r_2}{r_1}\)
4. \(\frac{r_{2}^{2}}{r_{1}^{2}}\)

Subtopic:  Kepler's Laws |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

If \(R\) is the radius of the orbit of a planet and \(T\) is the time period of the planet, then which of the following graphs correctly shows the motion of a planet revolving around the sun?

1.        2.    
3. 4.    
Subtopic:  Kepler's Laws |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A satellite of mass \(m\) revolving around the earth in a circular orbit of radius \(r\) has its angular momentum equal to \(L\) about the centre of the earth. The potential energy of the satellite is: 
1. \(- \frac{L^{2}}{2 mr}\)
2. \(- \frac{2L^{2}}{mr^2}\)
3. \(- \frac{3L^{2}}{m^2r^2}\)
4. \(- \frac{L^{2}}{mr^2}\)

Subtopic:  Satellite |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The value of acceleration due to gravity at a height of \(800~\text{km}\) from the surface of the earth (radius of the earth is \(6400~\text{km}\) and value of acceleration due to gravity on the earth's surface is \(981~\text{cm/s}^2\)) is:
1. \(775 ~\text{cm/s}^2 \) 2. \(872 ~\text{cm/s}^2 \)
3. \(981 ~\text{cm/s}^2 \) 4. \(\text{zero}\)
Subtopic:  Acceleration due to Gravity |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A planet moves around the sun. At a point \(P,\) it is closest to the sun at a distance \(d_1\) and has speed \(v_1.\) At another point \(Q,\) when it is farthest from the sun at distance \(d_2,\) its speed will be:

1. \(\dfrac{d_2v_1}{d_1}\) 2. \(\dfrac{d_1v_1}{d_2}\)
3. \(\dfrac{d_1^2v_1}{d_2}\) 4. \(\dfrac{d_2^2v_1}{d_1}\)
Subtopic:  Kepler's Laws |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital