1. | \(\dfrac{v}{3}\) | 2. | \(\dfrac{2v}{3}\) |
3. | \(\dfrac{3v}{4}\) | 4. | \(\dfrac{9v}{4}\) |
1. | \(11.2\sqrt2~\text{km/s}\) | 2. | zero |
3. | \(11.2~\text{km/s}\) | 4. | \(11.2\sqrt3~\text{km/s}\) |
The escape velocity from the Earth's surface is \(v\). The escape velocity from the surface of another planet having a radius, four times that of Earth and the same mass density is:
1. | \(3v\) | 2. | \(4v\) |
3. | \(v\) | 4. | \(2v\) |
A particle of mass \(m\) is projected with a velocity, \(v=kv_{e} ~(k<1)\) from the surface of the earth. The maximum height, above the surface, reached by the particle is:
(Where \(v_e=\) escape velocity, \(R=\) the radius of the earth)
1. | \(\dfrac{R^{2}k}{1+k}\) | 2. | \(\dfrac{Rk^{2}}{1-k^{2}}\) |
3. | \(R\left ( \dfrac{k}{1-k} \right )^{2}\) | 4. | \(R\left ( \dfrac{k}{1+k} \right )^{2}\) |