1. | \({S \over 2},{ \sqrt{3gS} \over 2}\) | 2. | \({S \over 4}, \sqrt{3gS \over 2}\) |
3. | \({S \over 4},{ {3gS} \over 2}\) | 4. | \({S \over 4},{ \sqrt{3gS} \over 3}\) |
Assuming that the gravitational potential energy of an object at infinity is zero, the change in potential energy (final - initial) of an object of mass \(m\) when taken to a height \(h\) from the surface of the earth (of radius \(R\) and mass \(M\)), is given by:
1. | \(-\dfrac{GMm}{R+h}\) | 2. | \(\dfrac{GMmh}{R(R+h)}\) |
3. | \(mgh\) | 4. | \(\dfrac{GMm}{R+h}\) |