1. | \(\frac{S}{2},\frac{\sqrt{3gS}}{2}\) | 2. | \(\frac{S}{4}, \sqrt{\frac{3gS}{2}}\) |
3. | \(\frac{S}{4},\frac{3gS}{2}\) | 4. | \(\frac{S}{4},\frac{\sqrt{3gS}}{3}\) |
Assuming that the gravitational potential energy of an object at infinity is zero, the change in potential energy (final - initial) of an object of mass \(m\) when taken to a height \(h\) from the surface of the earth (of radius \(R\) and mass \(M\)), is given by:
1. | \(-\frac{GMm}{R+h}\) | 2. | \(\frac{GMmh}{R(R+h)}\) |
3. | \(mgh\) | 4. | \(\frac{GMm}{R+h}\) |