A cat is situated at point \(A\) (\(0,3,4\)) and a rat is situated at point \(B\) (\(5,3,-8\)). The cat is free to move but the rat is always at rest. The minimum distance travelled by the cat to catch the rat is:
1. \(5\) unit
2. \(12\) unit
3. \(13\) unit
4. \(17\) unit
The position of a moving particle at time \(t\) is \(\overrightarrow{r}=3\hat{i}+4t^{2}\hat{j}-t^{3}\hat{k}.\) Its displacement during the time interval \(t=1\) s to \(t=3\) s will be:
1. | \(\hat{j}-\hat{k}\) | 2. | \(3\hat{i}-4\hat{j}-\hat{k}\) |
3. | \(9\hat{i}+36\hat{j}-27\hat{k}\) | 4. | \(32\hat{j}-26\hat{k}\) |
Which of the following statements is incorrect?
1. | The average speed of a particle in a given time interval cannot be less than the magnitude of the average velocity. |
2. | It is possible to have a situation \(\left|\frac{d\overrightarrow {v}}{dt}\right|\neq0\) but \(\frac{d\left|\overrightarrow{v}\right|}{dt}=0\) |
3. | The average velocity of a particle is zero in a time interval. It is possible that instantaneous velocity is never zero in that interval. |
4. | It is possible to have a situation in which \(\left|\frac{d\overrightarrow{v}}{dt}\right|=0\) but \(\frac{d\left|\overrightarrow{v}\right|}{dt}\neq0\) |
A particle is moving along a curve. Select the correct statement.
1. | If its speed is constant, then it has no acceleration. |
2. | If its speed is increasing, then the acceleration of the particle is along its direction of motion. |
3. | If its speed is decreasing, then the acceleration of the particle is opposite to its direction of motion. |
4. | If its speed is constant, its acceleration is perpendicular to its velocity. |
A particle is moving on a circular path of radius \(R.\) When the particle moves from point \(A\) to \(B\) (angle \( \theta\)), the ratio of the distance to that of the magnitude of the displacement will be:
1. | 2. | ||
3. | 4. |
|
A body started moving with an initial velocity of \(4\) m/s along the east and an acceleration \(1\) m/s2 along the north. The velocity of the body just after \(4\) s will be?
1. | \(8\) m/s along East. |
2. | \(4 \sqrt{2} \) m/s along North-East. |
3. | \(8\) m/s along North. |
4. | \(4 \sqrt{2} \) m/s along South-East. |
If three coordinates of a particle change according to the equations \(x = 3 t^{2}, y = 2 t , z= 4\), then the magnitude of the velocity of the particle at time \(t=1\) second will be:
1. \(2\sqrt{11}~\text{unit}\)
2. \(\sqrt{34}~\text{unit}\)
3. \(40~\text{unit}\)
4. \(2\sqrt{10}~\text{unit}\)
A particle starts moving with constant acceleration with initial velocity (\(\hat{\mathrm{i}}+5\hat{\mathrm{j}}\)) m/s. After \(4\) seconds, its velocity becomes (\(3\hat{\mathrm{i}}-2\hat{\mathrm{j}}\)) m/s. The magnitude of its displacement in 4 seconds is:
1. \(5\) m
2. \(10\) m
3. \(15\) m
4. \(20\) m
Three girls skating on a circular ice ground of radius \(200\) m start from a point \(P\) on the edge of the ground and reach a point \(Q\) diametrically opposite to \(P\) following different paths as shown in the figure. The correct relationship among the magnitude of the displacement vector for three girls will be:
1. \(A > B > C\)
2. \(C > A > B\)
3. \(B > A > C\)
4. \(A = B = C\)
A particle is moving such that its position coordinates \((x,y)\) are \((2\) m, \(3\) m) at time \(t=0,\) \((6\) m, \(7\) m) at time \(t=2\) s and \((13\) m, \(14\) m) at time \(t=5\) s. Average velocity vector \((v_{avg})\) from \(t=0\) to \(t=5\) s is:
1. | \(\frac{1}{5}\left ( 13\hat{i}+14\hat{j} \right )\) | 2. | \(\frac{7}{3}\left ( \hat{i}+\hat{j} \right )\) |
3. | \(2\left ( \hat{i}+\hat{j} \right )\) | 4. | \(\frac{11}{5}\left ( \hat{i}+\hat{j} \right )\) |