A body is moving with a velocity of \(30~\text{m/s}\) towards the east. After \(10~\text s,\) its velocity becomes \(40~\text{m/s}\) towards the north. The average acceleration of the body is:
1. \( 7~\text{m/s}^2\)
2. \( \sqrt{7}~\text{m/s}^2\)
3. \(5~\text{m/s}^2\)
4. \(1~\text{m/s}^2\)
A particle is moving in the \(XY\) plane such that \(x = \left(t^2 -2t\right)~\text m,\) and \(y = \left(2t^2-t\right)~\text m,\) then:
1. | the acceleration is zero at \(t=1~\text s.\) |
2. | the speed is zero at \(t=0~\text s.\) |
3. | the acceleration is always zero. |
4. | the speed is \(3~\text{m/s}\) at \(t=1~\text s.\) |
A particle moves so that its position vector is given by \(r=\cos \omega t \hat{x}+\sin \omega t \hat{y}\) where \(\omega\) is a constant. Based on the information given, which of the following is true?
1. | The velocity and acceleration, both are parallel to \(r.\) |
2. | The velocity is perpendicular to \(r\) and acceleration is directed towards the origin. |
3. | The velocity is not perpendicular to \(r\) and acceleration is directed away from the origin. |
4. | The velocity and acceleration, both are perpendicular to \(r.\) |
A particle is moving along a curve. Select the correct statement.
1. | If its speed is constant, then it has no acceleration. |
2. | If its speed is increasing, then the acceleration of the particle is along its direction of motion. |
3. | If its speed is decreasing, then the acceleration of the particle is opposite to its direction of motion. |
4. | If its speed is constant, its acceleration is perpendicular to its velocity. |