A particle is moving such that its position coordinates \((x,y)\) are \((2\) m, \(3\) m) at time \(t=0,\) \((6\) m, \(7\) m) at time \(t=2\) s and \((13\) m, \(14\) m) at time \(t=5\) s. Average velocity vector \((v_{avg})\) from \(t=0\) to \(t=5\) s is:
1. | \(\frac{1}{5}\left ( 13\hat{i}+14\hat{j} \right )\) | 2. | \(\frac{7}{3}\left ( \hat{i}+\hat{j} \right )\) |
3. | \(2\left ( \hat{i}+\hat{j} \right )\) | 4. | \(\frac{11}{5}\left ( \hat{i}+\hat{j} \right )\) |
A vector is turned without a change in its length through a small angle The value of and are, respectively:
1. | \(0, ad\theta\) | 2. | \(a d\theta, 0\) |
3. | \(0,0\) | 4. | None of these |
The angle turned by a body undergoing circular motion depends on the time as given by the equation, \(\theta = \theta_{0} + \theta_{1} t + \theta_{2} t^{2}\). It can be deduced that the angular acceleration of the body is?
1. \(\theta_1\)
2. \(\theta_2\)
3. \(2\theta_1\)
4. \(2\theta_2\)
Certain neutron stars are believed to be rotating at about \(1\) rev/s. If such a star has a radius of \(20\) km, the acceleration of an object on the equator of the star will be:
1. | \(20 \times 10^8 ~\text{m/s}^2\) | 2. | \(8 \times 10^5 ~\text{m/s}^2\) |
3. | \(120 \times 10^5 ~\text{m/s}^2\) | 4. | \(4 \times 10^8 ~\text{m/s}^2\) |
Three particles are moving with constant velocities \(v_1 ,v_2\) and \(v\) respectively as given in the figure. After some time, if all the three particles are in the same line, then the relation among \(v_1 ,v_2\) and \(v\) is:
1. \(v =v_1+v_2\)
2. \(v= \sqrt{v_{1} v_{2}}\)
3. \(v = \frac{v_{1} v_{2}}{v_{1} + v_{2}}\)
4. \(v=\frac{\sqrt{2} v_{1} v_{2}}{v_{1} + v_{2}}\)
A car moves on a circular path such that its speed is given by \(v= Kt\), where \(K\) = constant and \(t\) is time. Also given: radius of the circular path is \(r\). The net acceleration of the car at time \(t\) will be:
1. \(\sqrt{K^{2} +\left(\frac{K^{2} t^{2}}{r}\right)^{2}}\)
2. \(2K\)
3. \(K\)
4. \(\sqrt{K^{2} + K^{2} t^{2}}\)
Raindrops are falling with speed \(v\) vertically downwards and a man is running on a horizontal road with speed \(u.\) The magnitude of the velocity of the raindrops with respect to the man is:
1. \(v-u\)
2. \(v+u\)
3. \(\sqrt{{v}^2 + {u}^2 \over 2}\)
4. \(\sqrt{{v}^2 + {u}^2}\)
The equation of trajectory of a projectile is given by \(y = x-10x^{2}\). Its speed of projection is: (\(g =1 0\) m/)
1. \(1\) m/s
2. \(2\) m/s
3. \(3\) m/s
4. \(4\) m/s
A particle is thrown obliquely at \(t=0\). The particle has the same K.E. at \(t=5\) seconds and at \(t=9\) seconds. The particle attains maximum altitude at:
1. \(t=6\) s
2. \(t=7\) s
3. \(t=8\) s
4. \(t=14\) s