In a two-dimensional motion, instantaneous speed \(v_0\) is a positive constant. Then which of the following is necessarily true?
1. | the average velocity is not zero at any time. |
2. | average acceleration must always vanish. |
3. | displacements in equal time intervals are equal. |
4. | equal path lengths are traversed in equal intervals. |
The following are four different relations about displacement, velocity and acceleration for the motion of a particle in general.
(a) | \(v_{a v}=1 / 2\left[v\left(t_1\right)+v\left(t_2\right)\right]\) |
(b) | \(v_{{av}}={r}\left({t}_2\right)-{r}\left({t}_1\right) / {t}_2-{t}_1\) |
(c) | \(r=1 / 2\left[v\left(t_2\right)-v\left(t_1\right)\right]\left({t}_2-{t}_1\right)\) |
(d) | \({a}_{{av}}=v\left({t}_2\right)-v\left({t}_1\right) / {t}_2-{t}_1\) |
The incorrect alternative/s is/are:
1. | (a), (d) | 2. | (a), (c) |
3. | (b), (c) | 4. | (a), (b) |