Two particles having mass \(M\) and \(m\) are moving in a circular path having radius \(R\) & \(r\) respectively. If their time periods are the same, then the ratio of angular velocities will be:
1. \(\frac{r}{R}\)
2. \(\frac{R}{r}\)
3. \(1\)
4. \(\sqrt{\frac{R}{r}}\)
A particle moves along a circle of radius \(\frac{20}{\pi}~\text{m}\) with constant tangential acceleration. If the velocity of the particle is \(80\) m/s at the end of the second revolution after motion has begun, the tangential acceleration is:
1. \(40\) ms–2
2. \(640\pi\) ms–2
3. \(160\pi\) ms–2
4. \(40\pi\) ms–2
A stone tied to the end of a \(1\) m long string is whirled in a horizontal circle at a constant speed. If the stone makes \(22\) revolutions in \(44\) seconds, what is the magnitude and direction of acceleration of the stone?
1. | \(\pi^2 ~\text{ms}^{-2} \) and direction along the tangent to the circle. |
2. | \(\pi^2 ~\text{ms}^{-2} \) and direction along the radius towards the centre. |
3. | \(\frac{\pi^2}{4}~\text{ms}^{-2} \) and direction along the radius towards the centre. |
4. | \(\pi^2~\text{ms}^{-2} \) and direction along the radius away from the centre. |